
NEUROMUSCULARANDBIOMECHANICALFACTORS

What We Know

1. The ACL is loaded by a variety of combined sagittal

and nonsagittal mechanisms during dynamic sport

postures considered to be high risk.1–6

2. In vivo strain of the ACL is related to maximal load

and timing of ground reaction forces.7,8

3. Females typically display a more erect (upright)

posture when contacting the ground during the early

stages of deceleration tasks.9–12

4. Maturation influences biomechanical and neuromus-

cular factors.13–20

5. Fatigue alters lower limb biomechanical and neuromus-

cular factors suggested to increase ACL injury risk.2,21–23

The effect of fatigue is most pronounced when combined

with unanticipated landings, causing substantial central

processing and central control compromise.24

6. Trunk and upper body mechanics influence lower

extremity biomechanical and neuromuscular fac-

tors.12,25,26

7. Hip position and stiffness influence lower extremity

biomechanical factors.2,10,27

What We Don’t Know

1. We still do not know the biomechanical and neuro-

muscular profiles that cause noncontact ACL rupture.

An understanding of the causes is central to identify-

ing how to prescreen at-risk individuals.

2. We do not yet understand the role of neuromuscular

and biomechanical variability in the risk of indirect or

noncontact ACL injury. Are there optimal levels of

variability, and do deviations from these optimal

levels increase the risk of injury?

3. Is noncontact ACL injury an unpreventable accident

stemming from some form of cognitive dissociation

Journal of Athletic Training 531

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-19 via free access



that drives central factors and the resulting neuro-

muscular and biomechanical patterns?

4. Is gross failure of the ACL caused by a single episode

or multiple episodes?

5. Is noncontact ACL injury governed by single or

potentially multiple high-risk biomechanical and

neuromuscular profiles?

Where We Go From Here

1. To best understand movement patterns linked to

noncontact ACL injury, authors should include

comprehensive kinetic, kinematic, and neuromuscular

(strength, postural stability, activation, and timing)

profiles (henceforth referred to as neuromechanics).

2. We need to improve our understanding of neurome-

chanical variability within and between individuals as

it relates to injury risk and injury mechanisms.

3. To fully appreciate joint loading profiles, we must

better understand the interaction of anatomical

structure, laxity, and neuromechanics.

4. Neuromechanical assessments of different tasks that

mimic the mechanical demands commonly associated

with sport-specific injury mechanisms should be

performed with the testing methods and interpreta-

tions particular to the task demands.

5. Neuromechanical factors predicting ACL injuries

need to be identified from prospective data.

6. We must develop tasks designed to stress the joint systems

that mimic injury mechanisms and are realistic to the

mechanistic purpose of the study. Further, musculoskel-

etal models describing cause-and-effect relationships need

to be studied explicitly within a realistic injury scenario.

7. We should determine if a critical threshold of

structural or functional weakness exists at which

compensatory strategies become evident.

8. We need to continue to expand research models and

analyses to include assessments of central processes

(automaticity, reaction time, etc), cognitive processes

(decision making, focus and attention, prior experi-

ence [expert versus novice, etc]), and metacognitive

processes (monitoring psychomotor processes, etc).

9. Further understanding of the influence of the head,

arms, and trunk segment on lower extremity neuro-

mechanics is important.

10. Further understanding of the influence of the matu-

rational process on lower extremity neuromechanics is

necessary.

11. Work that translates laboratory measures to the field

and field measures to the laboratory needs to be

performed to help with the interpretation of field and

laboratory findings. Validating commonly performed

field assessment (eg, squatting, landing, etc) to known

neuromechanics profiles is essential.

12. Technology must continue to advance and evolve to

help us better understand in vivo mechanics, allow

more precise transverse-plane measurements, and

improve the accuracy and ease of use of measurement

techniques in general.
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