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M
ultiple factors, whether individually or in combi-
nation, likely contribute to noncontact anterior
cruciate ligament (ACL) injury. Although research

has increased our understanding of contributing factors,
much remains unknown, and continued research is needed.
To that end, the fifth ACL Research Retreat was held at the
University of North Carolina at Greensboro, March 25–27,
2010. The retreat’s ongoing mission is to (1) present and
discuss the most recent research on ACL injury risk and
prevention and (2) identify new research directives aimed at
understanding the epidemiology, risk factors, and prevention
of noncontact ACL injury. This year, 75 clinicians and
researchers representing 6 countries participated.

All the keynote presenters are expert scientists engaged in
cutting-edge research on ACL injury risk and prevention.
Edward Wojtys, MD; Stephen W. Marshall, PhD; Darin A.
Padua, PhD, ATC; and Christopher M. Powers, PT, PhD,
focused on issues related to clinical and research consider-
ations for ACL-injured pediatric and adolescent athletes,
current trends in injury epidemiology, and new directions in
risk-factor assessment and efficacy of injury-prevention prog-
rams. Forty podium and poster presentations were organized
into thematic sessions: risk-factor assessment (specifically
factors associated with spinal and trunk control, muscle
strength and fatigue, anatomical and hormonal factors, and
landing and cutting strategies), injury mechanisms, risk-factor
screening, and prevention. A meeting hallmark is the
substantial time provided for group discussion after each
keynote address and thematic podium session. To close the
meeting, participants revisited and updated the consensus
statement from the 2008 ACL Research Retreat IV1 and
charted new directions for future research. Following are the
updated consensus statement, keynote presentation summa-
ries, and abstracts organized by topic and presentation order.

CONSENSUS STATEMENT

As at past retreats, the consensus statement was updated
and further refined based on the input of all participants at

the meeting’s end. Participants were divided into 3 interest
groups: hormonal and anatomical risk factors, neurome-
chanical contributions to ACL injury, and risk factor
screening and prevention. Within each group, the relevant
sections of the previous consensus document were dis-
cussed and updated as to (1) what we know based on new
evidence emerging in the literature and presented at the
retreat, (2) what remains unknown about these factors, and
(3) the important directions for future research needed to
address these unknowns. Each group then presented its
working draft to all participants for further discussion, and
drafts were circulated after the meeting for final comment.

From these discussions, some global observations,
themes, and recommendations emerged that deserve special
note. First, in response to general themes raised previous-
ly,1 we seem to be moving away from the purely descriptive
sex-comparison studies that have tended to dominate the
literature toward a better understanding of the underlying
mechanisms associated with the observed sex differences
and, more directly, ACL injury risk and prevention.
However, a more integrated approach in our research is
still desperately needed to better characterize the multifac-
torial nature of the ACL injury enigma: examine all
relevant anatomical (eg, posture, structure, body compo-
sition) and structural (eg, tibial slope, condylar geometry)
factors, as well as the associated neuromechanical out-
comes (eg, integrated findings from kinetic, kinematic, and
neuromuscular measures) used in assessing these risk
factors. Studying multiple factors is particularly challeng-
ing, given the relatively low incidence of ACL injury. Thus,
traditional risk-factor designs (eg, prospective cohort
studies) are needed but may not advance our scientific
understanding of the ACL injury mechanism rapidly
enough to permit these injuries to be prevented. To offset
these challenges, we must develop open-source databases
(eg, video registries, software models) to pool our
resources. Generating complementary new measurement
paradigms is also important, both to more quickly advance
our scientific understanding of the ACL injury mechanism
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and related risk factors and to gain a more integrated
understanding of this complex, multifactorial problem.
Continued emphasis on computer and cadaveric modeling
will allow multifactorial manipulation that is not possible in
vivo, and state-of-the-art robotic simulations will help us to
better understand complex relationships among muscle
force production, joint and ligament morphology, and
resultant ACL strain. More functional in vivo testing
conditions are needed to describe cognitive, supraspinal,
and spinal contributions to knee joint and ACL loading
within the truly random movement environment of game
play. The roles of behavior and cognition have to date
received relatively little attention, yet the work of previous
researchers2,3 and the keynote presentation by Chris Powers
provide compelling evidence of the need to explore these
areas. Addressing these and other unknowns is critical to the
continued development and refinement of injury-prevention
programs. Although most prevention programs to date have
focused on eliminating certain movements (eg, valgus
maneuvers) as a solution to the problem, the evidence
supporting any one mechanism alone is quite weak. Thus,
although these programs have shown some success and
should continue, the ideal ACL injury-prevention program
may not be realized until we have a better grasp on this
complex, multifactorial problem.

Another general consideration raised at the retreat was
increasing our focus on the youth athlete and taking more of
a public health approach in our injury-risk screening and
injury-prevention strategies in this population. The best time
to identify and counter risk is posited to be during the
adolescent years, but we still know very little about when
relevant risk factors emerge, when intervention should be
initiated, and how we can improve participation in,
compliance with, and effectiveness of ACL injury-preven-
tion programs in this critical target population. Children
and adolescents perform athletic tasks differently than
adults,4–7 and recent findings8,9 suggest that the response
to injury-prevention programs may differ across age groups.
Additionally, the continuing trends of inactivity and obesity
(eg, loss of physical education classes in US schools) are of
great concern with respect to their effect on acquisition of
general motor programs, skill development, and prospective
ACL injury risk. Another important public health concern is
the consequences of ACL injury so early in life in both the
short (eg, lost school time) and long term (eg, osteoarthritis,
inactivity). Therefore, we call for a better understanding of
the prospective risk factors for ACL injury in the maturing
youth population; improved understanding of the cognitive,
behavioral, and socioeconomic factors that influence the
successful implementation of ACL injury-awareness and
injury-prevention programs in youth sport participants; and
a movement toward more translational approaches to
implementing ACL injury-prevention programs into com-
munity settings to maximize public health.

Although only 2 years have passed since the last ACL
retreat, a number of advancements in our knowledge of
ACL injury risk and prevention have reshaped the
important unknowns and future directions we need to
take. These changes are reflected in the revised consensus
statement. We hope that the insights and proceedings from
this meeting will continue to strengthen the foundation
upon which quality research and clinical interventions in
ACL injury risk and prevention can be advanced.

NEUROMUSCULAR AND BIOMECHANICAL
FACTORS

What We Know

1. The ACL is loaded by a variety of combined sagittal

and nonsagittal mechanisms during dynamic sports

postures considered to be high risk10–15 (abstracts

#22, Yu et al, and #25, Myer et al).

2. In vivo strain of the ACL is related to maximal load

and timing of ground reaction forces.16,17 Females

typically display a more erect or upright posture when
contacting the ground during the early stages of

deceleration tasks.18–21 However, the magnitude of

these differences may be task dependent (abstract

#26, Benjaminse et al).

3. Maturation influences biomechanical and neuromus-

cular factors4–6,22–26 (abstract #33, Sigward et al).

4. Fatigue alters lower limb biomechanical and neuromus-
cular factors and is suggested to increase ACL injury

risk.27–31 The effect of fatigue is most pronounced when

combined with unanticipated landings, causing substan-

tial central processing and control compromise.3,32

5. Trunk, core, and upper body mechanics influence

lower extremity biomechanical and neuromuscular

factors19,33–35 (abstract #1, Chaudhari et al).

6. Hip position and stiffness influence lower extremity

biomechanical factors.36–38

What We Don’t Know

1. Which biomechanical and neuromuscular profiles

cause noncontact ACL rupture? An understanding

of the causes is central to identifying how to screen at-

risk individuals.

2. Although we understand that the trunk, core, and hip

affect knee biomechanics in general, because of the

limited number of research models estimating in vivo
ACL strain, we still do not know how these trunk and hip

biomechanical factors affect in vivo ACL strain during

the highly dynamic activities known to cause ACL injury.

3. We do not yet understand the role of neuromuscular

and biomechanical variability on the risk of indirect or

noncontact ACL injury. Are there optimal levels of

variability, and do deviations from these optimal
levels increase the risk of injury?

4. Slower reaction times, slower processing speed, and

visual-spatial disorientation have been observed in

athletes sustaining ACL injuries,2 but we do not know

if noncontact ACL injury is an unpreventable accident

stemming from some form of cognitive dissociation

that drives central factors and the resulting neuro-
muscular and biomechanical patterns.3

5. Is gross failure of the ACL caused by a single episode

or multiple episodes?

6. Is noncontact ACL injury governed by a single or

potentially multiple high-risk neuromuscular and

biomechanical profile(s)?
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Where We Go From Here

1. To best understand movement patterns linked to

noncontact ACL injury, researchers should include

comprehensive kinetic, kinematic, and neuromuscular

(strength, postural stability, activation, and timing)

profiles (henceforth referred to as neuromechanics).

2. We need to improve our understanding of neurome-

chanical variability within (including between limbs)
and among individuals as it relates to injury risk and

injury mechanisms.

3. The interaction of anatomical structure, laxity, and

neuromechanics needs to be better understood to fully

appreciate joint-loading profiles.

4. Anatomical, hormonal, and neuromechanical factors

and their interactions predictive of ACL injuries

should be derived from prospective data. To that
end, multifactorial prospective risk-factor studies are

necessary, despite their expense and time-consuming

nature.

5. To better understand how movement patterns and

other structures in the kinetic chain affect ACL loads,

we must continue to develop and improve quality

models (eg, computational, cadaveric) that noninva-

sively estimate in vivo ACL forces and strain.

6. We need to develop tasks designed to stress the joint
systems that attempt to mimic injury mechanisms and

are realistic to the mechanistic purpose of the study.

Further, musculoskeletal models describing cause-

and-effect relationships have to be studied explicitly

within a realistic injury scenario.

7. Laboratory assessments of neuromechanical factors

should use tasks that mimic the mechanical demands

commonly associated with relevant sport-injury mech-
anisms, and care should be taken not to overgeneralize

results from one specific task to other tasks with

different mechanical demands.

8. We must identify any critical thresholds of structural

or functional weakness at which compensatory strat-

egies become evident.

9. We should continue to expand research models and

analyses to include assessments of central processes
(eg, automaticity, reaction time), cognitive processes

(eg, decision making, focus and attention, prior

experience [eg, expert versus novice]), and metacogni-

tive processes (eg, monitoring psychomotor process-

es).

10. The influence of the trunk and core on knee

biomechanics and specifically ACL loads must be

better characterized.

11. The influence of the maturational process on knee
biomechanics and specifically ACL loads must be

further understood.

12. Work that translates laboratory measures to the field

and field measures to the laboratory will help with the

interpretation of findings in both settings. Especially

important is the validation of commonly performed

field assessment (eg, squatting, landing) to known

neuromechanics profiles evident within the inherently

random sport environment.

13. Technology must continue to advance and evolve to

help us better understand in vivo mechanics, allow

more precise transverse-plane measurements, and

improve the accuracy and ease of use of measurement

techniques generally.

14. We still do not have precise descriptions of the

mechanisms of ACL rupture. The injury video is the

only method available to extract biomechanical

information from actual injury situations. Therefore,

we must accumulate injury videos to allow us to better

understand the injury mechanism.

15. We must continue to move away from purely

descriptive sex-comparison studies and focus more

on the underlying mechanisms associated with the

observed sex differences and, more directly, ACL

injury risk and prevention as appropriate.

ANATOMICAL AND STRUCTURAL FACTORS

What We Know

1. The female ACL is smaller in length, cross-sectional

area, and volume than the male ACL, even after

adjusting for body anthropometry.39

2. The female’s femoral notch height is larger and

femoral notch angle is smaller than in males, which

may influence femoral notch-impingement theory.

Femoral notch width is a good predictor of ACL size

(area and volume) in males but not in females.

Femoral notch angle is a good predictor of ACL size

in females but not in males.39

3. The female ACL is less stiff (lower modulus of

elasticity) and fails at a lower load level (lower failure

strength), even after adjusting for age, body anthro-

pometrics, and ACL size.40

4. Ultrastructural analysis of the ACL shows that the

percentage of area occupied by collagen fiber (area of

collagen fibers/total area of the micrograph) is lower

in females when adjusted for age and body anthropo-

metrics.41

5. Compared with uninjured people, injured individuals

have smaller ACLs (area and volume),42 greater

posterior slope of the lateral tibia,43,44 similar slope

of the medial tibia,43,44 reduced condylar depth on the

medial tibial plateau,43 and presence of an anterior

medial ridge on the intercondylar notch.45

6. Clear laxity differences have been observed between

males and females, with females often displaying

greater genu recurvatum,46,47 anterior knee laxity,48–52

and general joint laxity.53–55 Females are also reported

to have 25% to 30% greater frontal-plane and

transverse-plane laxity56–59 and less torsional stiff-

ness56,60,61 than males, differences observed even when

no sex differences in anterior knee laxity were

present.56,58,62
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7. Greater magnitudes of joint laxity have been associ-

ated with altered knee-joint neuromechanics during

weight bearing62–66 and increased risk of ACL

injury.50,52,67–71

8. Women have greater anterior pelvic tilt, hip antever-

sion, tibiofemoral angle, and quadriceps angle than

men.46,72 No sex differences have been observed for

tibial torsion,46 navicular drop,46,47,72 and rearfoot

angle.46,73

9. Lower extremity alignments differ among maturation

groups and develop at different rates in males and

females among maturation groups.74

What We Don’t Know

1. Can physical activity influence these anatomical and

structural factors, and if so, when, how, and for how

long do the changes occur as a result of physical

activity?

2. What effect does meniscal geometry have on ACL

strain and failure during activity?

3. What variations in the anatomical and structural

factors influence knee-joint neuromechanics to in-
crease risk?

4. Some evidence indicates that elevated body mass index

predicts future ACL injury in females52 and that

artificially increasing body mass index encourages
dangerous biomechanical strategies.35,75 Although

body composition may be a relevant anatomical risk

factor, we still know very little about its influence on

lower extremity neuromechanical strategies and ACL

injury risk.

Where We Go From Here

1. We should include all relevant lower extremity

anatomical and structural factors along with neuro-

mechanical factors in large-scale, prospective risk-

factor studies. Developing more efficient, affordable,

reliable, and readily available measurement methods

of these anatomical and structural factors for use in

these large-scale, prospective risk-factor studies is
important.

2. Case-control study designs for examining structural

factors should also be considered because structural

factors are not acutely affected by ACL rupture.

3. We must continue to examine interactions among

tibial slope (anterior-posterior, medial-lateral), ACL

volume, ultrastructure, laxity, femoral notch geome-

try, condylar geometry, and lower extremity alignment
for their effects on ACL strain and failure and

predicting injury risk.

4. We should examine the influence of physical activity

during maturation and across the life span on
anatomical and structural factors.

5. The role of meniscus geometry on ACL strain and

failure during activity must be described.

6. We must continue to examine the influence of

anatomical (eg, posture, structure, body composition)

and structural factors (eg, tibial slope, condylar

geometry) on knee-joint neuromechanics, both in

adults and in maturing youth.

7. We need to understand the underlying factors that

cause one to develop at-risk anatomical and structural

profiles during maturation. Additional factors, such as

the roles of physical activity, body composition

changes, and muscle properties (eg, stiffness, slack

[resting tissue] length, and fatty infiltration) should be

considered.

HORMONAL FACTORS

What We Know

1. The likelihood of suffering an ACL injury is not

evenly distributed across the menstrual cycle; instead,

the risk of suffering an ACL disruption is greater

during the preovulatory phase of the cycle than during

the postovulatory phase.76–80 During the preovulatory

phase, hormone levels change dramatically, falling to

their nadirs with the onset of menses and rising rapidly

near ovulation.

2. Sex hormone (eg, estrogen, testosterone, relaxin)

receptors are present on the human ACL.81–85

3. Sex hormone (eg, estrogen, testosterone) receptors

have been found in skeletal muscle.86–88

4. Large individual variations in female hormone profiles

should be appreciated in our study designs.89 Al-

though hormone profiles are substantially more

consistent within an individual female from month

to month, some variability still exists.90 This within-

subjects variability can be reduced by taking multiple

samples over repeated days.90

5. Consistent with individual variabilities in hormone

profiles, substantial variations exist in the magnitude

of change in laxity (ie, anterior knee laxity, genu

recurvatum, general joint laxity) that females experi-

ence across the menstrual cycle.55,91 However, within

an individual from month to month, the magnitude of

cyclic variations in laxity is quite reproducible.55

6. Because of the individual variabilities in hormone

profiles across the menstrual cycle, a single measure-

ment within a single phase (even with hormone

confirmation) is not adequate to accurately character-

ize the same hormone profile or time point in a

particular phase of the menstrual cycle for all females.

7. The mechanical and molecular properties of the ACL

are likely influenced not only by estrogen but also by

the interaction of several sex hormones, secondary

messengers, remodeling proteins, and mechanical

stresses.82,85,89,92–94

8. A time-dependent effect for sex hormones and other

remodeling agents influences a change in ACL tissue

characteristics.85,89
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9. In animal models, interactions have been noted among

mechanical stress, hormones, and altered ACL struc-

ture and metabolism.95–97

What We Don’t Know

1. What is the underlying mechanism for the increased

likelihood of ACL injury in the preovulatory phase?

2. How do ACL injury rates vary in females who are

eumenorrheic, oligomenorrheic, or using oral contra-
ceptives?

3. What are the sex-specific hormonal, molecular, and

genetic mechanisms of sex hormones on ACL

structure, metabolism, and mechanical properties?
Although the influence of hormones on ACL biology

has been examined in a variety of animal models97–106

and relatively few human studies,94,107 consensus is

lacking because of variations in study designs and the

species examined.

4. What is the role of sex hormones on skeletal muscle

structure and function in controlling dynamic motion?

What, if any, changes occur in neuromuscular and

biomechanical risk factors across the menstrual cycle?

Although previous authors108–110 have suggested that

cyclical changes in neuromuscular and biomechanical

control may be negligible, these results may be

incomplete because of the individual variations in
hormone profiles (see ‘‘What We Know,’’ items 4–6).

5. Does the rate of increase or time duration of

amplitude peaks in hormone fluctuation play a role

in soft tissue changes?

6. Although cyclic variations in anterior knee laxity may

be sufficient to alter knee joint neuromechanics,111,112

we do not yet fully understand the clinical implications

of cyclic changes in knee laxity on weight-bearing
knee-joint function.

7. What are the interactions among mechanical stress on

the ACL, hormone profiles, and altered ACL struc-

ture and metabolism in physically active females?

Where We Go From Here

1. We must continue to consider the interactive effect of

all relevant hormones on soft tissue structures and

ACL injury risk, including hormonal, molecular, and

genetic mechanisms.

2. The hormonal, molecular, and genetic mechanisms by

which sex hormones may explain the observed sex-

specific differences in ACL structure, metabolism, and

mechanical properties should be defined (see also
‘‘Anatomical and Structural Factors’’).

3. More studies using research designs relevant to the

healthy, physically active female are needed to

examine hormone effects on ACL structural, metab-
olism, and mechanical properties.

4. When examining hormone influences on knee-joint

function and ACL injury risk, females using oral

contraceptives and those with irregular menstrual

cycles (amenorrheic, oligomenorrheic) should also be

examined. The type of contraceptive should be

documented and both the endogenous and exogenous

levels of sex hormones examined.

5. Future studies of hormonal risk factors should focus

more on individual results, rather than mean values,

because individual menstrual cycle characteristics vary

markedly.

6. Improved methods of measuring individual hormone

profiles to better match the complexity of the role of

hormones in soft tissue changes must be developed.

We need to verify phases of the cycle with actual

hormone measures and consider all relevant hor-

mones, including estrogen, progesterone, and possibly

others. To confirm that the desired time in the cycle or

a particular phase is truly captured in future study

designs, hormone samples should be taken over

multiple days rather than measured at a single time

point.90

7. When making female-to-male comparisons, variables

should be collected during the early follicular phase,

when hormone levels are at their nadirs (preferably 3–

7 days postmenses) to decrease the potential for cyclic

fluctuations in hormones that confound the anatom-

ical, neuromuscular, and biomechanical outcomes of

interest.

8. We must examine the interaction among hormones,

mechanical loading, and ACL mechanical properties

in the physically active female.

9. Examination of ACL injury in genome-wide associa-

tion studies to establish any genetic components to

ACL injury should be encouraged.

RISK-FACTOR SCREENING AND PREVENTION

What We Know

1. Training programs that incorporate elements of

balance training, plyometric training, education,

strengthening, and feedback alter biomechanical and

neuromuscular variables thought to contribute to

ACL injury.113–119

2. Intervention programs have been shown to reduce the

incidence of ACL injuries.78,120–125 Although these

results are promising, ACL injury rates and the

associated sex disparity have not yet diminished. The

ideal ACL injury-prevention program has yet to be

identified.

3. The protective effects of ACL injury-prevention

training programs appear to be transient.126–128

4. Field assessment and screening tools show promise for

identifying individuals at increased risk for ACL

injury (abstract #33, Padua et al).

5. Injuries to the ACL can have long-term effects,

including contributing to the burden of osteoarthri-

tis.129–132
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6. Cohort studies suggest that a prior history of ACL

injury may be a risk factor for another ACL injury on

the ipsilateral or contralateral side.133–135 Family

history of ACL injury also appears to increase

risk.136–138

What We Don’t Know

1. What are the mechanisms underlying the success of

injury-prevention programs? Specifically, what ele-

ments of an injury-prevention program (strengthen-

ing, plyometrics, etc) produce the desired protective

effect?

2. How much training stimulus (eg, duration, timing) is

required to produce the desired protective effect, and

how long does the effect last?

3. At what age should an injury-prevention program be

implemented to reduce potential neuromuscular and

biomechanical risk factors?

4. Should intervention programs be tailored to specific

sports, specific ages, or an individual athlete’s needs?

Evidence to date suggests that injury-prevention

programs may be more effective for soccer than

basketball.139 However, most prevention programs

have been designed for and tested in soccer and team

handball athletes. Further, current programs do not

appear to be as successful in pediatric age groups.8,9

5. Do intervention programs influence athletic perfor-

mance?

6. Although an individual’s family history136–138 and

personal history of ACL injury133–135 appear to

increase the risk of ACL injury, the mechanisms and

prospective risk factors associated with this elevated

risk are not known.

7. Are ACL injury mechanisms and prospective risk

factors the same in pediatric and adult populations?

8. What are the effects of physical activity (ie, inactivity)

and the availability of physical education on prospec-

tive ACL-injury risk factors?

9. What are the effects of individual, organizational, and

socioeconomic factors on the successful implementa-

tion of ACL injury-prevention programs in various

settings?

10. What barriers and facilitators are associated with

injury-prevention program compliance?

Where We Go From Here

1. Further define the epidemiology (burden and effect) of

ACL injury, including individual risk factors, and

assess interactions among risk factors (eg, predictive

risk profiles). To that end:

a. Establish population-based registries of ACL

injuries and strengthen and expand ongoing

injury-surveillance systems to enable monitoring

of long-term trends in ACL incidence, including

sex differences. Information regarding ACL inju-

ries should include type, mechanism, risk factors,

reconstruction procedures, and outcomes.

b. Develop standard operational definitions for ACL

injury-incidence and injury-prevalence studies and

mechanisms in order to facilitate cross-study

comparisons (eg, direct contact, indirect contact,

noncontact injury).

c. Define ACL injury risk factors across different

populations: age, maturation, sex, sport, and

experience level.

d. Understand prospective risk factors for ACL

reinjury. Are they the same as for the initial

ACL injury?

e. Understand the consequences of ACL injury on

future health and other outcomes (lost school

time, etc).

f. Define the direct and indirect costs of sport-related

ACL injuries.

2. Expand screening and prevention research in the

following ways:

a. Continue to develop and validate other field-

assessment and screening protocols that identify

individuals at risk for ACL injury. Should we

develop and validate minimum standards for an

ACL injury-risk screening protocol?

b. Increase knowledge regarding injury-prevention

programs. What are key factors to modify with

training? Should programs be population specific

with regard to sport, maturation, and level of

experience? What are the essential elements

(exercises types, dose)? How can training pro-

grams address issues related to fatigue? What is the

optimal timing with respect to season? What is the

optimal duration and frequency (dose)? How long

do the positive effects of training programs for

preventing ACL injury last after an injury-

prevention program is completed (ie, when is a

booster needed?)? What are the perceived barriers,

attitudes, and motivations related to compliance

with injury-prevention programs? Does increasing

knowledge and awareness of programs increase

compliance? Regarding emerging differential evi-

dence of effectiveness, what are the characteristics

of responders and nonresponders to an ACL

injury-prevention program? What is the cost-

effectiveness of ACL injury-prevention strategies?

c. Develop and evaluate new ACL injury-prevention

interventions, including educational programs,

sport-specific conditioning and training, modifica-

tion of anatomical and hormonal factors, etc.

3. Evaluate if injury-prevention programs can positively

or negatively affect athletic performance.

4. Begin translational research to implement ACL

injury-prevention programs into community settings

to maximize public health effects. Specifically
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a. Evaluate the benefits of a population-based

approach (everyone receives the intervention) or
a high-risk approach (only high-risk individuals

receive the intervention) and determine best

practices for dissemination of ACL injury-preven-

tion strategies in the community.

b. Apply and translate the Translating Research into

Injury Prevention Practice (TRIPP) model of

injury prevention for the ACL.140

c. Develop partnerships and systems approaches with

organizations to better understanding barriers to

implementation and to improve compliance and
program effectiveness (sports governing bodies,

coaches, and school-based organizations; profes-

sional organizations such as the National Athletic

Trainers’ Association, American Physical Therapy

Association, and American Orthopaedic Society for

Sports Medicine).

d. Look to other countries for translation models

that have successfully adopted programs for

different communities to maximize program com-
pliance and effectiveness in the United States.
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