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Objective: To describe the concept of statistical power as
related to comparative interventions and how various factors,
including sample size, affect statistical power.

Background: Having a sufficiently sized sample for a study
is necessary for an investigation to demonstrate that an
effective treatment is statistically superior. Many researchers
fail to conduct and report a priori sample-size estimates, which
then makes it difficult to interpret nonsignificant results and
causes the clinician to question the planning of the research
design.

Description: Statistical power is the probability of statisti-
cally detecting a treatment effect when one truly exists. The a
level, a measure of differences between groups, the variability of
the data, and the sample size all affect statistical power.

Recommendations: Authors should conduct and provide
the results of a priori sample-size estimations in the literature.
This will assist clinicians in determining whether the lack of a
statistically significant treatment effect is due to an underpow-
ered study or to a treatment’s actually having no effect.
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A
certified athletic trainer (AT) is treating a student-

athlete who has sustained a tibial plateau fracture
and reads a study about the effects of using an

ultrasound bone stimulator to decrease healing time. After
reading that the study showed no difference between the
bone stimulator and a placebo with regard to bone healing,
the AT thinks, ‘‘The rationale for the treatment studied in
this published paper is valid, and anecdotally, I have seen
great responses with the exact protocol in similar patients.
But are there things that could explain the lack of statistical
significance?’’

Whereas there might be numerous answers to the
clinician’s question, including subtle differences in the
protocol and setting, we will focus this article on 2 possible
statistical explanations: sample-size calculations and type II
statistical error. A common question asked by researchers
during the design of an intervention study is ‘‘How many
participants do I need to see a difference, if one actually
exists, between those in the treatment group and those in
the control group?’’ This question may appear simple, but
unfortunately, the answer is not that straightforward. It is
important for clinicians to understand study methods and
appraise whether the statistical power was adequate when
nonsignificant results are reported.

In the first paper of the ‘‘Statistical Primer for Athletic
Trainers’’ series, we presented the difference between
statistical significance and clinical meaningfulness.1 We
encouraged authors to provide additional statistical evi-
dence, such as effect sizes and confidence intervals, along
with the traditional P value, in the second paper of the
series.2 In this installment of the series, we will focus on the
determinants used to estimate sample size. It is beyond the

scope of this article to supply an all-encompassing
explanation of sample-size calculations, but interested
readers are referred to several resources for greater
detail.3–8

What Is Statistical Power?

Statistical power is the probability of statistically
detecting a treatment effect when one truly exists. In other
words, statistical power is the likelihood of rejecting a null
hypothesis that states there is no difference between
groups.1 In research, we study samples to make inferences
about a population of interest. A certain amount of
uncertainty or error is associated with this approach,
especially if the sample was not randomly selected. In
research decisions, the 2 types of possible sources of error
are typically referred to as type I and type II statistical
errors (Table 1). A type I error (false-positive) occurs when
the authors conclude that a treatment did work (ie, a
statistically significant treatment effect was detected)
although there was actually no difference in the effective-
ness of the interventions. As discussed in the first paper of
this series,1 the a level is associated with the likelihood of
making a type I error, and it usually is specified as .05. The
second type of error is a type II error (false-negative),
which occurs when investigators fail to reject the null
hypothesis (ie, a statistically significant treatment effect
was not detected) when a treatment effect was indeed
present. This situation is problematic because the study
conclusion was that the groups did not differ when, in fact,
they did. The probability of making a type II error is
associated with b, which represents the likelihood of
concluding that the 2 groups were equal when, in fact, they
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were not. Typically, more emphasis is placed on minimiz-
ing the risk of type I errors than of type II errors; however,
not statistically finding an effect that truly exists can be as
important as statistically finding an effect that does not
really exist. For example, if an AT suspects an injury but
there is no underlying condition, the student-athlete will
unnecessarily miss practice or playing time (type I error or
a false-positive). However, an AT could conclude that no
injury is present and allow the student-athlete to compete
when, in reality, an injury is present (type II error or a false-
negative).

Statistical power is quantitatively represented as 1 � b,
where b is the probability of making a type II error. The
complement of b (1�b) is statistical power, the probability
of correctly rejecting the null hypothesis when it is false.
Another way to understand statistical power is to say that a
research study with a b equal to .10 would have a statistical
power of 0.90, or a 90% chance of detecting a treatment
effect that is truly present. A study with a statistical power
of 0.90 has a much better chance of rejecting the null
hypothesis when it is indeed false than does a study with a
statistical power of 0.70.

Factors Influencing Statistical Power

Statistical power is influenced by the a level, a measure
of the expected difference between the groups being
studied, and the sample size. As a review, the a level is a
quantifiable measure of the researcher’s willingness to
commit a type I error.1 The most commonly used a level is
.05, which means that 5% of the time, a researcher is
willing to incorrectly say the groups differ when, in reality,
they do not.

It is important to have a clear understanding of the
expected difference between the 2 groups when estimating
statistical power. Not only do we need to examine the
expected difference between the groups but also the
predicted similarity (homogeneity) or variation (heteroge-
neity) in how participants respond to the treatment as well
as the variability of the outcome measure among partici-
pants in the control or placebo group. It is easier to achieve
statistical significance when less variability (ie, more
consistency in the treatment effect) is seen in the outcome
measure than when a great deal of variability is present. A
frequent method used to combine the differences and
variability into a single value for estimating power is the
effect size. The effect size is the magnitude of the difference
between 2 groups relative to the variability and was
examined in the second paper of this series.2 If the
treatment effect in a study is small, it may not be possible
to reject the null hypothesis (stating there is no difference).

When calculating statistical power, it might not be clear
what effect size to use. An effect size can be derived from
pilot data or the previous literature or it can be an arbitrary
value (ie, small, medium, large) that corresponds to what
the researcher thinks is most appropriate.9

Finally, sample size is the last component that we can
objectify and is traditionally used to calculate statistical
power. As discussed and illustrated earlier in the series,1 it
is generally easier to achieve statistical significance with
large sample sizes than with small sample sizes because the
former provide better population estimates, more precise
confidence intervals, and smaller standard errors. As a
result, one might think the easy solution is to incorporate as
many participants as possible to ensure high statistical
power. Unfortunately, this approach may result in wasting
time and money, yet more important are the ethical
concerns about research conducted with human partici-
pants. For example, if 50 participants (25 in each group) are
sufficient to demonstrate a treatment is effective, involving
100 participants exposes an additional 50 participants to the
risks of the study. The converse is also true: If the sample
size required for a study is 100 but only 50 participants can
be enrolled due to, for example, time and money, the study
should not be undertaken because the participants would be
exposed to the risks of the study for potentially no societal
benefit.

In research, it is most common to set statistical power at
0.80 or higher and the a level at .05, which then leaves the
effect size and sample size as unknown factors in the
calculation. Typically, an investigator will estimate the
sample size before starting a study (a priori) in order to
determine how many participants are needed to minimize
the risk of a type II error. The ideal choice for the
anticipated effect size would be based on a clinically
relevant change. Further guidance regarding the potency of
an intervention to promote change typically comes from the
previous literature or pilot studies. Using the minimal
detectable change or minimum important difference as the
expected difference may also help to address the clinical
relevance of the difference between groups as well as the
sample size needed for appropriate statistical testing. With
a larger effect size, a smaller sample size can achieve the
same statistical power at the traditional .05 a level. For
instance, with an effect size of 0.50 and a level of .05, 128
participants would be needed to achieve a statistical power
of 0.80 (Table 2). However, if the effect size was larger,
such as 0.80, then only 52 participants would be needed to
achieve the same statistical power of 0.80. Occasionally, an
a priori power analysis is conducted by selecting effect
sizes based on the standard interpretation conventions
described previously.2 Whereas this approach will establish
the sample size needed to reach statistical significance with
the chosen effect size, we advocate avoiding this approach
because it fails to account for the clinical relevance of the
change.

We, along with other authors,10,11 caution against
performing statistical power analyses only after data
collection has been completed (post hoc). Sometimes this
is referred to as retrospective power. By definition, if a
statistically significant result is attained, post hoc power
computation will reveal an adequately powered study;
however, this does not rule out the possibility of a type I
error (ie, small sample size with a few outliers). In contrast,

Table 1. Type I and Type II Errors

Truth

Result of Statistical Test

Fail to Reject Null

Hypothesis

Reject Null

Hypothesis

No difference

between groups

No error (probability

¼ 1 � a)

Type I error—false-

positive (probability

¼ a)

Difference between

groups

Type II error—false-

negative

(probability ¼ b)

No error (probability

¼ 1 � b)
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if a study does not reach statistical significance, a type II
error could have occurred or there may truly be no
difference between the 2 groups. Reporting retrospective
power does not offer any additional information to explain
nonsignificant results. Rather, it is more beneficial to
explain unexpected nonsignificant findings using effect
sizes, confidence intervals, and the variability of participant
responses to the intervention and to examine whether the
null hypothesis could, in fact, be true.12 However, one may
report post hoc power calculations with the proviso that
they be used for planning research studies and conducting
meta-analyses but not for interpreting the results of the
current study.

Methods to Improve and Estimate Statistical Power

Now that we have described statistical power and its
influencing factors, it is important to review methods for
improving the statistical power of a study. By studying a
sample that is more homogeneous (ie, participants are all
similar), such as limiting the focus to collegiate female
soccer players instead of all collegiate athletes (ie, both
sexes, all sports), the overall between-subjects variability
will likely decrease. This will in turn increase the effect
size. However, a more homogeneous sample also carries
disadvantages, such as the inability to generalize (ie,
external validity) to a larger group (eg, all collegiate
athletes versus collegiate female soccer players). Another
approach to decreasing variability with the intent of
increasing statistical power is to use a repeated-measures
design. By measuring the dependent variable on multiple
occasions, the intersubject variability will decrease, ulti-
mately increasing the precision of the study and its overall
statistical power. Statistical power can also be increased by
using a reliable measurement. When researchers use an
unreliable tool for measuring the outcome variable, the
variability within the scores increases, thereby decreasing
the statistical power.

A second option is to use an intervention that has a large
effect size. As previously mentioned, a larger effect size
will be easier to detect statistically than a smaller effect
size, which increases the probability of rejecting the null
hypothesis when it is false (greater statistical power).
Whereas some aspects of an intervention can be adjusted to
increase an effect size, there are limits to how much an
intervention can be manipulated. For example, although
one might produce a greater intervention effect by having
patients complete 1 hour of rehabilitation 5 days per week
instead of 1 hour of rehabilitation 3 days per week, the
trade-off might be that the target population cannot commit
to and comply with such a time demand.

It is beyond the scope of this article to provide a detailed
list of all the computer applications available for calculating
statistical power. However, we would like to mention a few

for the reader who is interested in learning more. Some of the
common applications include Power Analysis and Sample
Size (pricing varies, available at https://www.ncss.com/
software/pass/), G*Power (free, available at http://www.
gpower.hhu.de/), SAS (pricing varies, available at https://
www.sas.com/order/product.jsp?code¼PERSANLBNDL),
and SPSS (pricing varies, available at http://www-01.ibm.
com/software/analytics/spss/products/statistics/base).

Challenges In Estimating Statistical Power

Even with the best-planned methods that include an a
priori power analysis and use of a promising intervention
based on a solid rationale and previous research, attaining
statistical significance is not guaranteed. The most obvious
explanation is that the intervention does not work as
hypothesized, regardless of how sound the rationale or
previous research was. Despite the heavy bias in the
literature toward publishing only studies with statistical
significance, knowing that an intervention is effective is as
important as knowing that it is not effective. Another
alternative explanation, as discussed earlier, is the chance
of a type II error; specifically, the intervention had an
effect, but our statistical results do not lead us to conclude
there was an effect.

One may ask, ‘‘How can we have a type II error when we
included an a priori power analysis?’’ The oversimplified
answer is that we are estimating. Similar to relying on a
sample to estimate the population, when computing the
sample size needed using an a priori power analysis, we are
really just estimating. Whereas a and b are most often
established by convention, as described previously, the
other essential elements used to establish the effect size
(mean differences and variance) are estimated from
samples (research or pilot work). Based on random
sampling differences, it is possible to obtain a study sample
that has a different variance than the values used for the
power analysis. Thus, the estimated sample size from a
power analysis is best treated as a conservative minimal
estimate, and therefore, prudent practice would include
slight increases to the sample size to account for the
uncertainty.

CONCLUSIONS

In summary, statistical power (1�b) is the probability of
finding a statistically significant difference between treat-
ment and control groups when one truly exists. Statistical
power is influenced by the a level, the expected difference
between groups (effect size), and the sample size. Sample
size is often the only factor that is readily under the control
of the investigator. Other ways to improve statistical power
include assembling a more homogeneous sample, using an
intervention that has a large effect size as long as it
maintains clinical relevance, or applying a repeated-
measures design.

RECOMMENDATIONS

The sample size of a research project needs to be large
enough to reach statistical significance if there is indeed a
difference between the means of the treatment and control
groups. We encourage authors to perform and report a
priori sample-size estimations in manuscripts submitted to

Table 2. Factors Influencing Statistical Power

Sample Size (N) Effect Size a Level

Statistical

Power (1 � b)

128 0.50 .05 0.80

52 0.80 .05 0.80

102 0.50 .10 0.80

42 0.80 .10 0.80
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the Journal of Athletic Training. Performing these calcu-
lations will help to ensure that statistical power can be
achieved and that extra participants are not being exposed
to an experimental treatment that may be potentially
harmful. The publication of these sample-size estimations,
as well as the rationale for the effect size used (difference
and variance estimates), will allow the reader to determine
whether the study was possibly underpowered or it is more
likely that the treatment did not work as hypothesized.
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