
Journal of Athletic Training 2019;54(11):1192–1196
doi: 10.4085/1062-6050-438-18
� by the National Athletic Trainers’ Association, Inc
www.natajournals.org

Epidemiology

Statistical Methods for Handling Observation
Clustering in Sports Injury Surveillance

Avinash Chandran, PhD, MS*; Derek Brown, PhD, MS‡;
Aliza K. Nedimyer, MA, ATC*†; Zachary Y. Kerr, PhD, MPH*

*Matthew Gfeller Sport-Related TBI Research Center, Department of Exercise and Sport Science and †Human
Movement Science Curriculum, University of North Carolina at Chapel Hill; ‡Department of Biostatistics and Data
Science, University of Texas Health Science Center at Houston

Context: Advances in sports injury-surveillance methods
have made it possible to accommodate non–time-loss (NTL)
injury reporting; however, the analysis of surveillance data now
requires careful consideration of the nuances of NTL injury
records.

Background: Injury-surveillance mechanisms that record
NTL injuries are more likely to contain multiple injury records per
athlete. These must be handled appropriately in statistical
analyses to make methodologically sound inferences.

Methods: We simulated datasets of NTL injuries using
varying degrees of observation clustering and compared the
inferences made using traditional techniques with those made

after accounting for clustering in computations of injury
proportion ratios.

Results: Inappropriate handling of even moderate cluster-
ing resulted in flawed inferences in 10% to 12% of our
simulations. We observed greater bias in our estimates as the
degree of clustering increased.

Conclusions: We urge investigators to carefully consider
observation clustering and adapt analytical methods to accom-
modate the evolving sophistication of surveillance.

Key Words: injury proportion ratios, independence, sand-
wich estimator

Key Points

� Sophisticated sports injury-surveillance methods increase the likelihood of clustered observations in surveillance
data.

� The sandwich estimator may be used when analyzing clustered data to minimize biased estimates and flawed
inferences.

S
ports injury surveillance has been critical in
identifying patterns of injury incidence and out-
comes among athletes in different sports.1–5 As its

popularity has increased, surveillance methods have been
adapted and mechanisms have grown in complexity. One
notable advance in recent years has been the accommoda-
tion of non–time-loss (NTL) injuries, which result in
participation-restriction time ,24 hours. This contrasts
with older surveillance data, which typically examined only
injuries resulting in �24 hours of participation-restriction
time (and noted as time-loss [TL] injuries). The National
Collegiate Athletic Association Injury Surveillance Pro-
gram (NCAA-ISP)6 has collected NTL injuries since 2009–
2010; the National Athletic Treatment, Injury and Out-
comes Network (NATION)7 has also collected NTL
injuries since its inception in 2011–2012. These methods
have yielded findings suggesting that a substantial propor-
tion of sports-related injuries in collegiate populations are
NTL.4

The analysis of NTL injury data, however, poses a
unique statistical challenge. Although injury-surveillance
mechanisms that exclusively record TL injuries may

contain multiple injury records per athlete, mechanisms
that also record NTL injuries are more likely to
demonstrate this phenomenon. This is commonly re-
ferred to as observation clustering (resulting in violation
of the independence assumption) in the statistical
literature and requires careful analytical consideration
when measuring the burden of injury using effect
estimates such as injury proportion ratios (IPRs). This
problem, as it relates to IPRs estimated using sports
injury data, was introduced by Knowles et al.8,9

However, there has not yet been detailed discussion of
it or of strategies to handle it in this context. We present,
first, a short review of the statistical challenge posed by
observation clustering in regard to NTL injuries and,
second, a strategy for handling the challenge and making
methodologically sound inferences.

Measuring the Burden of Injury Using Injury
Proportion Ratios

In epidemiology, risk and incidence rate ratios or both are
commonly used to quantify and compare differential
morbidity and mortality between samples.10 Analogously,
injury rate ratios (IRRs) and IPRs are commonly used effect
estimates in sports injury surveillance. To illustrate the
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abovementioned analytical challenge posed by NTL injury
clustering, we will focus on IPRs in this manuscript:

IPR ¼
# of Specific Injuries in Group X

R All Injuries in Group X

� �

# of Specific Injuries in Group Y
R All Injuries in Group Y

� �

and is constructed as an estimation of differential risk based
solely on a sample of injured individuals. The motivation
for using the IPR in this context and the method for
estimating it has been discussed previously.8 Briefly, as
seen in the equation, the ratio uses frequencies of injury
observations in the effect estimation. A ratio .1 would
imply that a higher proportion of a given type of injury was
observed in group X compared with group Y. Similarly, a
ratio ,1 would imply that a lower proportion of a given
type of injury was observed in group X compared with
group Y. A simple application of this measure was
demonstrated by Deits et al,11 who used the IPR to
illustrate sex differences in proportions of observed head
injuries, facial injuries, concussions, etc, among ice hockey
players. The proportion of injuries to the head was higher in
female players than in male players (IPR ¼ 2.22; 95%
confidence interval [CI] ¼ 1.78, 2.77).11

We note that it is not the effect estimate that is influenced
by clustering, as the formula is based on a count of injuries.
Instead, as we will discuss, it is the estimation of the
standard error (SE) of the IPR and any inference made
using it that is directly biased when clustering is present.

Clustering

When a set of injury observations is analyzed to estimate
IPRs, it is inherently assumed that the observations are
independent. In other words, standard analytical procedures
are accompanied by an unstated understanding that they are
applied to a set of distinct cases. This understanding is
associated with a more critical assumption that the errors
attached to any effect estimate are unrelated,10 which
directly relates to the process of computing the SEs
associated with effect estimates. When multiple injury
observations are linked to the same athlete, this assumption
is clearly violated.

It has been suggested9 that traditional estimates of the SE
are still appropriate in this context, when clustering is not
pervasive within a given set of records.9 However, the
inclusion of NTL injury reporting in surveillance increases
the likelihood of observation clustering. It may be more
common to observe .1 injury per athlete when records
include both TL and NTL injuries rather than TL injuries
only. Nonetheless, in circumstances of observation cluster-
ing, the fundamental condition associated with standard
analytical procedures—that the errors are unrelated—no
longer holds true. In these cases, the SE accompanying any
effect estimate such as an IPR is biased.10 As SEs attached
to an estimate are routinely used to construct 95% CIs
around the estimate and these CIs often are the basis for
inferences regarding statistical significance (whether or not
the null value of 1.00 is contained in the interval), failing to
acknowledge the violation of the independence assumption
can lead to flawed inferences. However, statistical tech-
niques are available that can be used to address this
problem.

Sandwich Estimator

A robust method for handling the clustering phenomenon
is employment of the sandwich covariance estimator.10,12,13

This technique is typically used to handle misspecification
of model covariance, which is a consequence of the
independence assumption being violated.10,12,13 Compared
with standard methods for computing model covariance, the
sandwich estimator uses an adapted method that incorpo-
rates empirical data10,13 and consequently adjusts the SE
estimates. Practically, this technique is employed in
statistical analyses that use a unique identifier to denote a
given participant, which is then repeated each time an
observation (an injury record in this context) in the dataset
corresponds to the same participant. Ultimately, the data-
collection and -management protocols would only need to
ensure that the included athletes could be distinguished.
Such identification could be done without compromising
the deidentified nature of the data (eg, randomly generated
alphanumeric expressions). However, for a number of
surveillance systems that focus on data analysis at the
aggregate level and not the individual level, such
identification may not be feasible. At a minimum, such
studies may benefit from disclosure of this limitation,
noting the data were analyzed under the assumption of
independence.

Simulations

To illustrate the effect of the sandwich estimator, we
simulated separate datasets of NTL injuries (each contain-
ing 1000 NTL injury records) with various degrees of
observation clustering. That is, we created datasets with the
following amounts of clustering: no clustering (0%), low
clustering (~25%), moderate clustering (~50%), consider-
able clustering (~75%), and high clustering (.95%). Thus,
the proportion of observation clustering was used as a direct
indication of the number of unique athletes who contributed
injury records to each dataset. In each scenario, we then
computed IPRs (using log-binomial regressions) to estimate
sex differences in injury proportions across levels of event
type (games and practices) and injury mechanisms (player-
to-player contact, player contact with surface or equipment,
and noncontact or overuse). In these IPRs, female
participants served as the referent group. This approach is
used extensively in descriptive epidemiology of sport-
related injuries.4,8,14–17

For the estimated IPRs, we computed SEs and CIs using
2 methods. We first computed the SEs and CIs assuming
that all records were independent and then repeated the
computation while accounting for observation clustering
using the sandwich estimator to produce the sandwich SEs
(SSEs) and corresponding CIs. This simulation process was
repeated 1000 times for each clustering scenario. Details
regarding our simulation procedures and the code used for
analysis may be found in the Appendices.

Results

A summary of results from our simulations is presented
in the Table. The averages presented in this table were
computed from 1000 simulated datasets under each of the
clustering conditions described earlier. As previously
mentioned, the estimates of the IPRs themselves should
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not change drastically, as evidenced in the Table. However,
we draw attention to the average estimated SE and SSE.
Minimal changes in the SE occurred with different levels of
clustering. Yet as the levels of clustering increased, so did
the SSE. The differences between the SSE and SE
increased as well. For example, while examining sex
differences in the proportions of game-related injuries, we
saw that the average SE (not appropriately accounting for
clustering) ranged between 0.063 and 0.064, whereas the
average SSE (appropriately accounting for clustering)
ranged between 0.063 and 0.102. Moreover, we observed
greater differences, on average, between the 2 SE
estimations as the degree of clustering increased (Figures
1 and 2).

To highlight the effect of the differences between SEs on
inferences related to statistical significance, we present an
agreement proportion in the Table. This is a measure of the
number of times (out of 1000) that an agreement was noted
between the SE-based and SSE-based decisions with

respect to the null hypothesis that the proportions for
males and females would not be different. For example,
while comparing sex differences in game-related injuries
from 1 simulated dataset with high clustering (.95%), the
SE-based 95% CI (0.75, 0.97) was constructed around an
IPR of 0.85, while the SSE-based 95% CI around the same
IPR was constructed as (0.69, 1.05). In an applied context,
using the sandwich estimator results in failure to reject the
null hypothesis, whereas the standard approach results in
sufficient evidence to reject the null. Consequently,
inferential disagreement was observed in this simulated
dataset. As the degree of clustering increased, so did the
proportion of disagreement in our simulations (Table).

Summary

Injury proportion ratios are a powerful method for
comparing differential injury prevalence between groups.8

However, the methods relied up on to draw inferences

Table. Summary of Results From Simulations Under Various Clustering Scenariosa

Variable Clustering

Average Injury Proportion Ratio

Comparing Male Athletes

With Female Athletesb

Average

Standard Errorc

Average Sandwich

Standard Errord

Agreement

Proportione

Event type

Game

No 0.999 0.063 0.063 1.00

Low 0.997 0.064 0.077 0.95

Moderate 0.998 0.064 0.089 0.89

Considerable 0.996 0.064 0.098 0.85

High 0.994 0.064 0.102 0.83

Practice

No 1.001 0.063 0.063 1.00

Low 1.003 0.063 0.077 0.96

Moderate 1.002 0.063 0.089 0.89

Considerable 1.004 0.064 0.098 0.85

High 1.006 0.064 0.103 0.83

Injury mechanism

Player-to-player contact

No 0.998 0.090 0.090 1.00

Low 0.995 0.090 0.109 0.95

Moderate 0.996 0.090 0.126 0.90

Considerable 0.992 0.090 0.139 0.84

High 0.998 0.090 0.145 0.81

Player contact with surface/equipment

No 0.999 0.089 0.089 1.00

Low 0.997 0.090 0.109 0.95

Moderate 0.997 0.090 0.126 0.88

Considerable 1.006 0.090 0.138 0.84

High 0.998 0.090 0.145 0.84

Noncontact/overuse

No 1.003 0.090 0.090 1.00

Low 1.008 0.090 0.109 0.94

Moderate 1.008 0.090 0.126 0.88

Considerable 1.001 0.090 0.138 0.85

High 1.004 0.090 0.146 0.85

a Clustering descriptor used as an indication of the number of unique athletes that contributed injury records to each dataset as follows: no
clustering (0%), low clustering (~25%), moderate clustering (~50%), considerable clustering (~75%), and high clustering (.95%).

b Average injury proportion ratios computed from 1000 simulations containing 1000 non–time-loss injury records (1 injury proportion ratio
estimated per simulated dataset).

c Average standard errors estimated from 1000 simulations using traditional techniques assuming independence.
d Average standard errors estimated from 1000 simulations using the sandwich estimator (correcting for violations of independence

assumption).
e Comparison of agreement in rejecting the null based on 95% confidence intervals estimated using traditional technique and sandwich

estimator.
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related to an estimated IPR are predicated on the
aforementioned assumption of independence. As presented
here, the failure to handle violations of this assumption can
lead to biased estimates of the SE and consequently flawed
inferences. Although observation clustering and resultant
violations of the independence assumption are difficult to
avoid in injury surveillance, we present here a technique for
handling such violations. The sandwich covariance estima-
tor has been shown to be robust to similar misspecifications
of model covariance.10,12,13 We discuss here the specific
application of this technique to injury surveillance and
illustrated its value in this context. Although our discus-
sions have been primarily limited to NTL injuries, we
acknowledge the possibility that any combination of NTL
and TL injuries may be clustered within a given set of
surveillance data. As such, we note that investigators may
apply the sandwich estimator as demonstrated here, even
while conducting comparative analyses on consolidated
sets of clustered TL and NTL injury observations.

Knowles et al stated9 that the concern about correcting for
clustering may be minimal if the average number of injuries
per injured athlete is low. However, we urge investigators to
use the sandwich estimator even when no clustering is
suspected. Our results indicate that the SSE estimations are

identical to the standard or traditional SE estimations in
cases of no clustering. We note that this is consistent with
the statistical theory surrounding the sandwich estimator,
and this property has been described in the context of
presenting the mathematical derivation of the estimator.10

Moreover, although the differences in SE estimations may
seem negligible out of context, it is important to consider the
inferential disagreement observed in our simulations.
Inappropriate handling of even moderate clustering resulted
in flawed inferences in 10% to 12% of our simulations. The
degree of bias in the estimated SEs and the resultant flawed
inferences depend on the extent of clustering as well as the
nature of clustering. That is, not only the proportion of
clustered observations (as a fraction of all observations)
within a dataset but also the number of observations
contributed by participants with multiple observations
directly affect the observed results. Thus, we encourage
investigators to carefully consider observation clustering in
order to protect against inflated likelihoods of type I error.
This will better inform clinicians using the literature as a
foundation for evidence-based practice. Ultimately, the
application of this technique may depend on the availability
of requisite data (ie, unique identifiers for participants).
However, as false rejections of the null hypothesis are

Figure 1. Differences between traditionally estimated standard errors and sandwich standard errors over varying degrees of
observational clustering for event type.

Figure 2. Differences between traditionally estimated standard errors and sandwich standard errors over varying degrees of
observational clustering for injury mechanism.
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generally considered to be egregious errors in observational
and experimental science, it is advisable to use methods to
minimize such errors whenever possible.
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