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Objective: To evaluate the current literature regarding the
utility of global positioning system (GPS)–derived workload
metrics in determining musculoskeletal injury risk in team-based
field-sport athletes.

Data Sources: PubMed entries from January 2009 through
May 2019 were searched using terms related to GPS, player
workload, injury risk, and team-based field sports.

Study Selection: Only studies that used GPS metrics and
had injury as the main outcome variable were included.

Data Extraction: Total distance, high-speed running, and
acute : chronic workload ratios were the most common GPS
metrics analyzed, with the most frequent sports being soccer,
rugby, and Australian rules football.

Data Synthesis: Many distinct workload metrics were
associated with increased injury risk in individual studies
performed in particular sport circumstances; however, the body
of evidence was inconclusive as to whether any specific metrics
could consistently predict injury risk across multiple team-based
field sports.

Conclusions: Our results were inconclusive in determining
if any GPS–derived workload metrics were associated with an
increased injury risk. This conclusion is due to a myriad of
factors, including differences in injury definitions, workload
metrics, and statistical analyses across individual studies.
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Key Points

� Whether any global positioning system–derived workload measures were associated with increased injury risk was
unclear.

� To advance the field, researchers and practitioners should focus on unifying injury definitions and workload
measures and thresholds.

� Additionally, researchers should use statistical analyses that maintain the complex nature of athlete monitoring and
injury risk.

O
ver the past 10 years, the field of athlete workload
monitoring has accelerated rapidly, mostly due to
the introduction of global positioning system

(GPS) technology in field sports. Broadly described, athlete
monitoring describes the quantification of stresses incurred
by athletes both inside and outside of practices and
competitions with the purposes of enhancing athletic
performance, determining athlete readiness, and mitigating
injury risk. Training and match workloads are generally
quantified in terms of external and internal loads. External
load refers to a player’s cumulative locomotor movements
and can be measured using GPS and accelerometers.
External load is quantified using individual player move-
ment distance, velocity, accelerations, and decelerations.1,2

Internal load refers to the physiological response of a
player to an external load and can be determined using
objective measures of heart rate and rating of perceived
exertion (RPE).1,3,4 The relationships of external and
internal load indicators with injury risk have been examined
in various elite team sports such as Australian rules
football, rugby, and soccer.5

Understanding the risk factors of injury is an underlying
theme of sports medicine research. Injuries create both

physical and psychological burdens for athletes, as well as
competitive and economic burdens for sports teams.6,7

Historically, in athletic training, injury risk factors have
been evaluated by taking an individual’s preseason
measurements (eg, strength, flexibility, injury history) and
then monitoring injuries throughout the season. Retrospec-
tively, the data would be analyzed to look for associations
between single preseason measurements and injury occur-
rence. The introduction of athlete monitoring methods
allows the incorporation of daily workload metrics, leading
to a more temporal-based approach to injury risk analysis.
For athletic trainers, a greater understanding of the daily
sporting demands placed on an athlete could assist in
decisions regarding injury prevention, rehabilitation, and
return to play.

The emergence of workload monitoring technology in
team-based sports has been accompanied by literature
surrounding the use of sensor data for predicting or being
associated with an increased injury risk. The purpose of our
systematic review was to evaluate and summarize the
original research literature on GPS–derived workload
measures for predicting or explaining injury risk in team-
based field-sport athletes.
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METHODS

We conducted a PubMed literature search using the
search terms shown in Table 1. Search filters were set to
include only articles written in English and published
between January 1, 2009, and May 1, 2019. A 10-year
restriction was placed on the included articles because GPS
technology in sport was introduced over the past decade.
Other inclusion criteria were (1) report of original research,
(2) injury as the main outcome metric, (3) use of GPS–
derived movement variables as independent variables, and
(4) team-based field-sport athletes were the only study
participants.

Methodologic Quality

Two independent raters graded each study for level of
evidence according to the National Institute of Health
Quality Assessment Tool for Observational Cohort and
Cross-Sectional Studies8 (Supplementary Table 1).

Data Extraction and Synthesis

For all included articles, the following data were
extracted: study design, participants (sample size, sex,
sport), GPS–derived metrics collected, and key findings,
including quantitative point estimates and confidence
intervals (CIs) of increased or decreased injury risk. We
provided CIs when they were reported in the original
article. When CIs are not presented in our ‘‘Results,’’ they
were not reported in the original article. Additionally, we
supplied exact P values or dichotomous findings of
statistical significance (eg, P , .05) in our ‘‘Results’’ based
on how they were reported in the included articles.
Similarly, if the authors used magnitude-based inference
descriptors (eg, likely harmful), we used the same
terminology (in quotation marks) in our summary. Meta-
analysis was not possible because of the heterogeneity of
study methods.

RESULTS

Search Results and Methodologic Quality

We identified 499 articles in the initial search and
selected 22 original research articles for inclusion (Figure).
The study design characteristics are detailed in Table 1.
Injury risk was assessed in 10 studies of Australian rules
football, 6 of soccer, and 5 of rugby and 1 study each of
Gaelic football and American football. The methodologic

quality assessments and individual study findings are
summarized in Supplementary Tables 1 and 2, respectively.

Total Distance

Total distance (TD) of player movement during a game
or practice session was evaluated as an injury risk factor in
8 articles.9–16 The authors most often divided the data into
1-, 2-, 3-, and 4-week timeframes; however, within these
timeframes, TD was reported differently, using either total
cumulative distance11,13,14,16 or team-based Z scores.9,12

One-Week Total Distance. In evaluating 1-week
cumulative TD, Windt et al14 found that a 1-SD increase
in TD from the team mean decreased the injury risk in the
current (odds ratio [OR]¼ 0.64; 95% CI¼ 0.46, 0.90; P ,
.05) but not the subsequent (OR ¼ 0.86; 95% CI ¼ 0.61,
1.22) week of the season. Whereas Ehrmann et al11 reported
a large g2 effect size (ES) when comparing 1-week TD
between injury blocks (average individual values leading
up to injury) and season blocks (individual’s average data
leading up to the injury block; g2 ¼ 0.30, P ¼ .06), with
increased TD being associated with increased injury risk.
When injury likelihoods across TD groups were compared,
the results were mixed. Bowen et al9 reported a reduced
noncontact injury risk (relative risk [RR]¼ 0.31; 95% CI¼
0.11, 0.86; P¼ .02) and overall injury risk (RR¼0.27; 95%
CI¼ 0.12, 0.60; P¼ .002) for soccer players in the low TD
group (Z scores¼�1.99 to�1) versus all other TD groups.
Additionally, multiseason data for another soccer sample
revealed an increased contact injury risk (RR¼ 2.09; 95%
CI ¼ 1.1, 4.0, P ¼ .03) among the ‘‘moderate to high’’ TD
group (Z scores ¼ 0–0.99) when compared with all other

Table 1. Search Terms

Search Terms

((((athlet*[Title/Abstract] or compete[Title/Abstract] OR

competition[Title/Abstract] OR team*[Title/Abstract] OR soccer[Title/

Abstract] OR football[Title/Abstract] OR rugby[Title/Abstract])) AND

(workload[Title/Abstract] OR load[Title/Abstract] OR train*[Title/

Abstract] OR run*[Title/Abstract] OR jump*[Title/Abstract])) AND

(sensor[Title/Abstract] OR ‘‘global positioning*’’[Title/Abstract] OR

GPS[Title/Abstract])) NOT (medical education[Title/Abstract] OR

students[Title/Abstract] OR pharm*[Title/Abstract] OR ‘‘intervention

team’’[Title/Abstract] OR Watson[Title/Abstract] OR Cancer[Title/

Abstract] OR GP[Title/Abstract] OR ‘‘general practitioner’’[Title/

Abstract], OR ‘‘chess’’[Title/Abstract] OR ‘‘medical team’’[Title/

Abstract] OR ‘‘primary health care’’[Title/Abstract]).

Figure. Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) flow diagram.
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Table 2. Description of Included Papers

Sport

Lead

Author Age Sex

No. of

Participants

Timeframe,

Season[s] Injury Definition

No. of

Injuries

Soccer Bacon17 Youth (pro) Male 41 2 Overuse injury as diagnosed by team

physiotherapist

85

Bowen9 Youth (pro) Male 32 2 Any injury that caused an absence from

future football activity (upper or lower,

contact or noncontact)

138

Bowen10 Adult (pro) Male 33 3 132

Ehrmann11 Adult (pro) Male 19 1 Noncontact, soft tissue injury that

prevented a player from playing in at

least 1 match

16

Jaspers16 Adult (pro) Male 35 2 Overuse injury that prevented a player

from participating in training or match

64

Malone26 Adult (pro) Male 37 1 Any injury that prevented a player from

taking a full part in all training and

match play activities typically planned

for that day for . 24 h from midnight

at the end of the day the injury was

sustained

75

Rugby Gabbett24 Adult (pro) Male 34 1 Noncontact, soft tissue, lower body injury

suffered by a player during a training

session, included no time-loss

(transient) injuries

87

Hulin27 Adult (pro) Male 28 2 Any time-loss injury that resulted in a

player being unable to complete full

training or missing match time

53

Hulin12 Adult (pro) Male 53 2 205

Thornton32 Adult (pro) Male 25 2 Any time-loss injury that did not result

from collision and that caused the

player to be unable to complete full

training or to miss match time

156

Windt14 Adult (pro) Male 30 1 Any injury that resulted in a loss of

match time

40

Australian rules

football

Colby18 Adult (pro) Male 46 1 Intrinsic (internal, overuse, overexertion)

injuries

297

Colby20 Adult (pro) Male 70 4 Any lower body noncontact (intrinsic)

injury resulting in a match missed

97

Colby19 Adult (pro) Male 70 4 Moderate (missed 1–2 wk of training

preseason or missed 1–2 games in-

season) and high-severity (missed .2

wk of training preseason or missed 2

games in-season) injuries with a

noncontact mechanism

104

Colby21 Adult (pro) Male 60 3 Only lower body, noncontact injury

resulting in matches missed

58

Duhig22 Adult (pro) Male 51 2 Hamstrings strain injury defined as acute

pain in the posterior thigh that caused

immediate cessation of exercise

22

Murray29 Adult (pro) Male 59 2 Any noncontact, time-loss injury

sustained during training or

competition that resulted in a

subsequent missed training session or

game

40

Murray13 Adult (pro) Male 59 2 40

Murray15 Adult (pro) Male 46 1 Any injury sustained in match or training

that resulted in a missed match

50 during in-season

(preseason not

reported)

Ruddy25 Adult (pro) Male 220 1 Hamstrings strain injury defined as acute

pain in the posterior thigh that resulted

in disruption of the hamstrings fibers

as confirmed by magnetic resonance

imaging

30

American football Sampson28 Adult (college) Male 52 1 Noncontact, soft tissue injuries 105

Gaelic football Malone23 Adult (pro) Male 37 1 Any injury that prevented a player from

taking a full part in all training and

match play activities typically planned

for that day for . 24 h from midnight

at the end of the day the injury was

sustained

151

Abbreviation: pro, professional.
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TD groups.10 Jaspers et al16 found ‘‘likely harmful’’ effects
for a ‘‘high’’ 1-week TD (.31 161 m, OR¼ 1.42; 90% CI¼
0.92, 2.21) when using the ‘‘low’’ group as a reference.

Hulin et al12 and Murray et al13 reported conflicting
findings in ‘‘high’’ and ‘‘very high’’ TD groups. Murray et
al13 noted a significant relationship between 1-week TD and
preseason or current-week injuries; however, for subse-
quent-week injuries, the 1-week high TD (.20 000 m)
group was associated with a decreased likelihood of injury
(RR ¼ 0.27, 90% CI ¼ 0.17, 0.41, P ¼ .03) versus the
‘‘moderate’’ TD group (10 000–15 000 m), whereas Hulin et
al12 found an increased injury risk (RR ¼ 1.9–13.9) for
contact injuries in the current week among the ‘‘very high’’
TD (Z-score � 2.0) group when compared with all other
groups.

Two-Week TD. Five groups10,16–19 examined the effect
of 2-week TD on injury risk with minimal overlap in
findings. In dividing the 2-week cumulative TD into 3
groups, Colby et al18 observed that the middle TD group
had an increased in-season injury risk (OR ¼ 0.426, P ,
.05) compared with the low TD group in Australian rules
football. Jaspers et al16 had similar results in that ‘‘likely
harmful’’ effects were present for the ‘‘medium’’ group
(48 050–59 185 m) versus the ‘‘low’’ group (OR ¼ 1.93;
90% CI ¼ 0.93, 4.02). In another Australian rules football
study by Colby et al,19 TD was split into 5 categories from
‘‘very low’’ to ‘‘very high,’’ and no differences in injury risk
were identified among groups. Similarly, Bowen et al9,10

evaluated soccer players in 2 studies using Z scores to
dichotomize TD groups. In their 2017 study9 of 1 season of
data, no differences existed between TD and injury risk. In
their 2019 study10 of similar data over 3 seasons, overall
injury risk decreased (RR¼ 0.40, P , .05) in those players
with a ‘‘high’’ TD Z score compared with all other groups.
Lastly, Bacon and Mauger17 did not find any differences in
injury risk among ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ groups for
2-week TD.

Three-Week TD. Most of the same researchers9,10,16,17,19

who evaluated 2-week TD also evaluated 3-week TD, and 2
groups16,19 found differences in injury risk. Colby et al19

reported increased injury risk with ‘‘very low’’ 3-week TD
(incidence rate ratio [IRR] ¼ 2.15; 95% CI ¼ 1.15, 4.01)
when versus ‘‘moderate’’ TD group, whereas Jasper et al16

demonstrated a ‘‘likely harmful’’ effect for the ‘‘high’’ TD
group (.86 422 m) compared with the ‘‘low’’ TD group
(OR ¼ 1.88; 90% CI ¼ 1.08, 3.26).

Four-Week TD. Four-week cumulative metrics are often
referred to as the chronic load, and 9 studies9–14,16,17,20

addressed the effect of 4-week TD on injury risk. Four sets
of investigators12,14,16,17 did not find relationships between
4-week TD and injury risk. Of those who did find
significant relationships, Ehrmann et al11 observed a large
g2 (ES) of 0.30 (P¼ .09) in 4-week TD between a 4-week
season block and a 4-week injury block, indicating that the
increased TD was associated with injury. As with the
shorter TD week block lengths, the results of Bowen et
al9,10 varied between their 1- and 3-season studies. In their
1-season study,9 4-week ‘‘high’’ TD was associated with the
greatest risk for overall injury (RR¼ 1.64; 95% CI¼ 1.05,
2.58; P¼ .03). Interestingly, a 4-week ‘‘very high’’ TD was
not related to overall injury risk (RR¼1.29; 95% CI¼0.34,
4.99; P¼ .71). In their 3-season study,10 ‘‘low’’ 4-week TD
increased the risk of noncontact injury (RR¼ 2.18; 95% CI

¼1.0, 4.6; P¼ .04) versus all other groups. Similarly, Colby
et al19 determined that the ‘‘very low’’ TD group (,71 059
m) was associated with increased injury risk (IRR ¼ 2.32;
95% CI ¼ 1.19, 4.52) compared with the ‘‘moderate’’ TD
group (78 627–84 879 m). In addition, Murray et al13

showed that, during the Australian rules football in-season,
a 4-week TD of �20 000 m had a lower risk of in-season
current-week injury (RR¼ 0.15; 90% CI¼ 0.08, 0.29; P¼
.03) than a TD of ,5000 m.

High-Speed Running Distance

Fifteen groups of authors9–11,13–19,21–25 reported on
relationships between the quantity of high-speed running
distance (HSD) and injury risk. The minimum velocity
threshold for ‘‘high speed’’ varied from 14.4 to 24 km/h
across these studies.

Week-to-Week Changes. Five articles13,14,22,25,26 exam-
ined how week-to-week changes in HSD affected injury
risk; however, each relied on unique HSD metrics. In 3
studies,14,25,26 a large change in HSD was a possible injury
risk factor. Malone et al26 found that, in Gaelic football, at a
threshold of �14.4 km/h, absolute weekly changes in HSD
above the reference group of �100 m had increased odds of
lower extremity injury. For the greatest change group of
351–455 m, the odds of injury were 3.02 times greater
(90% CI¼ 2.03, 5.18; P¼ .01); in the remaining 2 groups,
the odds risks were 1.20 (90% CI¼ 1.05, 3.93; P¼ .03) and
2.27 (90% CI ¼ 1.93, 4.44; P ¼ .002), respectively, for
changes of 101–205 m and 206–350 m. Windt et al14 noted
that higher percentages of distance covered at high speed
(.5 m/s) increased the injury likelihood for the current (OR
¼ 1.34; 95% CI¼ 1.03, 1.73; P , .05) and subsequent (OR
¼ 1.07; 95% CI ¼ 1.06, 1.08; P , .05) week, whereas
absolute HSD was not associated with injury risk in current
(OR ¼ 0.83; 95% CI ¼ 0.58, 1.20) or subsequent (OR ¼
0.83; 95% CI ¼ 0.57, 1.19) weeks. Specific to the
hamstrings injury risk in the subsequent week, Ruddy et
al25 described an increased relative risk of injury for players
who had an absolute change in distance .2524 m above 10
km/h (RR ¼ 2.2; 95% CI ¼ 1.0, 4.8).

One-Week HSD. Of the 8 groups9–11,15,16,22,25,26 who
reported on 1-week HSD, none used the same speed
threshold or dichotomization scheme. Four of the 8 articles
reported significant results. Malone et al26 reported an
increase in injury risk (OR¼5.02; 90% CI¼1.33, 6.19; P¼
.006) for their highest HSD group (750–1025 m) and a
decrease in injury risk (OR¼ 0.12; 90% CI¼ 0.08, 0.94; P
¼ .03) for the second-highest HSD group (701–750 m), both
compared with the lowest HSD group (�674 m). Using
logistic regression, Duhig et al22 found the largest effect of
HSD on hamstrings injury risk was in the week before
injury (OR ¼ 6.44; 95% CI ¼ 2.99, 14.41; P , .001), and
increased HSD was associated with injury. Similarly,
Ruddy et al25 demonstrated an increase in the relative risk
of hamstrings injury in 1-week HSD of 13 312 m (RR¼2.4;
95% CI ¼ 1.1, 5.3). Jaspers et al16 recorded a ‘‘likely
harmful’’ effect in the ‘‘medium’’ group (634–1028 m; OR
¼ 1.56; 90% CI ¼ 0.99, 2.46) versus the ‘‘low’’ group.
Finally, Bowen et al9 showed an increase in noncontact (RR
¼ 1.73, 95% CI not reported; P , .05) and overall (RR ¼
1.73; 95% CI¼ 1.06, 2.84; P , .05) injury risk for their 1-
week ‘‘moderate high’’ HSD group (Z scores ¼ 0.00–0.99)
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and a decrease in overall injury risk (RR¼ 0.38, P , .05)
for their 1-week ‘‘low’’ HSD group (Z scores ¼�1.99 to
�1.00). In contrast, Bowen et al10 reviewed 3 seasons of
data, which did not reflect any relationships between 1-
week HSD and injury risk.

Two- and 3-Week HSD. Six sets of research-
ers9,10,16,17,22,25 described 2- and 3-week HSD. Of these,
the only significant findings were from Duhig et al,22 who
determined that the sums of HSD in weeks 1 and 2 (OR¼
3.06; 95% CI¼2.03, 4.75; P , .001) and in weeks 1, 2, and
3 (OR¼2.22; 95% CI¼1.66, 3.04; P , .001) preinjury had
greater relative HSDs. Of note, Bacon and Mauger17

identified an association, although it was not statistically
significant, between a decrease in injury risk and 2-week
‘‘high’’ HSD compared with ‘‘normal’’ HSD (OR ¼ 0.58;
95% CI ¼ 0.33, 1.02; P ¼ .06).

Four-Week HSD. The largest number of HSD results
have been for the 4-week timeframe, likely due to its
chronic workload label. Among the 9 articles9–11,14–17,22,25

that addressed this area, no distinct trends were present. Of
significance, Bowen et al9 indicated that a 4-week
‘‘moderate-high’’ HSD (Z scores ¼ 0–0.99) increased the
relative risk of noncontact (RR ¼ 2.14; 95% CI ¼ 1.31,
3.50; P , .05) and overall (RR ¼ 1.56, 95% CI not
reported; P , .05) injuries. Moreover, with respect to
hamstrings injury, Duhig et al22 observed a greater relative
HSD distance in the 4 weeks leading up to a hamstrings
injury (OR ¼ 1.96; 95% CI ¼ 1.54, 2.51; P , .001).

Full Season. Gabbett and Ullah24 examined the distance
covered at various speeds during a National Rugby League
practice and its effect on transient, time-loss, and match-
loss injury risk. When .542 m and .2342 m were covered
at ‘‘very low’’ and ‘‘low’’ intensity, respectively, the RR was
decreased by 0.4 times (95% CI¼0.2, 0.9; P , .05) and 0.5
times (95% CI¼ 0.2, 0.9; P , .05), respectively, for time-
loss injury. Alternatively, .9 m spent at ‘‘very high’’
intensity increased the RR for transient (non–time loss)
injury by 2.7 times (95% CI ¼ 1.2, 6.5; P , .05).

Sprint-Running Distance

A handful of author groups10,11,15,18,25,26 specifically
evaluated sprint-running distance (SRD) by further classi-
fying high-speed running. Due to methodologic differences
among articles, sprint running was sometimes grouped with
high-speed running for analysis, and other times, it was
analyzed separately. The definition of sprint-running speed
differed among studies; speeds varied from 19.811,26 to 25.3
km/h10 and also as speed above an athlete’s 75% maximum
performance.18,20

Week-to-Week Changes. Three sets of investiga-
tors18,23,26 explored the effect of week-to-week changes in
the SRD on injury and found conflicting results. Colby et
al18 did not report any significant findings, whereas Malone
et al26 revealed that SRD changes between 75 and 105 m
(highest group) in 1 week had the greatest increased risk of
injury (OR ¼ 6.12; 90% CI ¼ 4.66, 8.29; P ¼ .001)
compared with a change of �50 m (lowest group). In
addition, the middle groupings (51–64 and 65–75 m) were
also associated with increased injury risk (OR¼ 3.12; 90%
CI ¼ 2.86, 6.13; P ¼ .03, and OR ¼ 4.12; 90% CI ¼ 3.86,
7.84; P ¼ .002, respectively). According to Ruddy et al,25

both absolute (.218 m, RR¼ 3.3; 95% CI¼ 1.5, 7.2) and

relative (.2.00, RR ¼ 3.6; 95% CI ¼ 1.7, 7.9) week-to-
week change in distance covered above 24 km/h had the
largest significant influence on the risk of hamstrings injury
in the subsequent week.

One-Week SRD. Malone et al26 indicated that, at a 1-
week SRD of 201 to 350 m, injury risk was decreased
compared with the lowest distance group of �165 m (OR¼
0.54; 90% CI¼ 0.41, 0.85; P¼ .005); however, at an SRD
of 350–525 m, injury risk was increased versus the same
reference group (OR ¼ 3.44; 90% CI ¼ 2.98, 4.84; P ¼
.004). Ruddy et al25 showed an increased injury risk for
absolute 1-week SRD .653 m (RR ¼ 3.4; 95% CI ¼ 1.6,
7.2). In their 3-season study, Bowen et al10 uncovered no
differences in injury risk across SRD groups.

Two-, Three-, and Four-Week SRD. The authors10,19

evaluating 2-, 3-, and 4-week SRD described no differences
in injury risk. In contrast, Colby et al18 displayed a decrease
in injury risk for the ‘‘very high’’ group for distance covered
at 75% of the athlete’s maximum sprint speed versus the
‘‘moderate’’ group at the 2-week (IRR ¼ 0.48; 95% CI ¼
0.24, 0.97) and 4-week (IRR¼ 0.45; 95% CI¼ 0.25, 0.84)
timeframes. Ruddy et al25 established increases in ham-
strings injury risk with 3-week (.1495 m, RR¼ 2.5; 95%
CI ¼ 1.2, 5.5) and 4-week (.197 m, RR ¼ 2.5; 95% CI ¼
1.1, 5.7) absolute distances covered at .24 km/h. Lastly,
Ehrmann et al11 calculated a large ES of 0.35 (P ¼ .07)
between the 4-week injury and season blocks, demonstrat-
ing that increased SRD during the injury block was
associated with an increased risk of injury.

Maximal-Velocity Exposure. Malone et al23 looked at
injury risk in Gaelic football players associated with
metrics of maximal-velocity sprinting. Players who ran at
more than 95% maximal velocity during training and match
play had a lower risk of injury in the subsequent week (OR
¼ 0.12; 95% CI¼ 0.01, 0.92; P¼ .001) than those who did
not exceed 85% of their maximal sprinting velocity.

In addition to univariate comparisons, Malone et al23

addressed the interaction of maximal-velocity exposure
with low and high chronic training loads. Among athletes
with a higher chronic training load (�4750 AU), a
protective effect was evident from increased exposure to
maximal-velocity (10–15 exposures) events compared with
fewer (�5) exposures (OR¼0.22; 95% CI¼0.10, 1.22; P¼
.03). Players with a lower chronic training load (�4650
AU) were at increased injury risk (OR ¼ 3.38; 95% CI ¼
1.60, 6.75; P ¼ .001) when exposed to �15 maximal-
velocity events versus fewer exposures (�5). In addition,
athletes with a higher chronic training load (�4750 AU)
were somewhat likely to be at reduced risk of injury when
they covered weekly maximal-velocity distances of 90 to
120 m compared with the reference group of ,60 m (OR¼
0.23; 95% CI ¼ 0.10, 1.33; P ¼ .06). Conversely, players
with low chronic training loads (�4750 AU) who covered
the same distance of 90 to 120 m at maximal velocity were
at higher risk of injury versus the reference group of ,60 m
(OR ¼ 1.72; 95% CI ¼ 1.05, 2.47; P ¼ .02).

Colby et al21 assessed individual players’ exposure to
.85% maximal speed during both 4-week and 8-week
timeframes. During the latter, ‘‘very low’’ (0–8), ‘‘high’’
(13–15), and ‘‘very high’’ (.15) exposures were associated
with increased injury risk (‘‘low’’: IRR ¼ 5.76; 95% CI ¼
1.69, 19.66; ‘‘high’’: IRR ¼ 3.03; 95% CI ¼ 1.01, 9.10;
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‘‘very high’’: IRR¼ 4.70; 95% CI¼ 1.49, 14.87). Analysis
of the 4-week data did not reveal any significant findings.

Accelerations and Decelerations

Taking acceleration distance into consideration, Gabbett
and Ullah24 indicated that the distances covered in mild
(0.55–1.11 m/s2), moderate (1.12–2.78 m/s2), and maximal
accelerations (�2.79 m/s2) were related to non–time-loss
injuries; the higher the number of accelerations, the lower
the risk of non–time-loss injury (RR ¼ 0.2; 95% CI ¼ 0.1,
0.4 for mild accelerations; RR¼ 0.3; 95% CI¼ 0.1, 0.6 for
moderate accelerations; RR ¼ 0.4; 95% CI ¼ 0.2, 0.8 for
maximal accelerations).

Bowen et al9,10 evaluated 1-, 2-, 3-, and 4-week
timeframes by dividing the number of accelerations into 5
groups based on Z scores. Several relationships were
identified in 1 season of soccer data.8 At the 1-week mark,
the overall relative risk of injury (RR¼ 0.35, P , .05) was
decreased in athletes who produced a ‘‘low’’ number of
accelerations (Z score¼�1.99 to�1.00). A ‘‘high’’ number
of accelerations (Z score¼ 1.00–1.99) increased the overall
injury risk in weeks 1 (RR ¼ 1.83, P , .05) and 4 (RR ¼
1.66, P , .05), whereas for a ‘‘very high’’ number of
accelerations (Z score .2.00), the relative risk of overall
injury increased across 1 (RR ¼ 3.06, P , .05), 2 (RR ¼
3.19, P , .05), and 3 (RR¼3.84, P , .05) weeks versus all
other groups. In addition, the noncontact injury risk was
also elevated for a ‘‘very high’’ number of accelerations in
weeks 3 (RR¼ 5.11; 95% CI¼ 1.75, 14.96; P¼ .003) and 4
(RR¼ 4.25, 95% CI not reported; P , .05). Conversely, a
‘‘low’’ number of accelerations over 3 weeks (744–2861)
reduced the noncontact (RR¼ 0.21; 95% CI¼ 0.05, 0.87; P
¼ .03) and overall (RR ¼ 0.31; 95% CI ¼ 0.13, 0.76; P ¼
.01) injury risks. Analysis of 3 seasons of data10 revealed no
differences between the number of accelerations and
injuries identified across any of the weekly timeframes.
The same researchers10 looked at deceleration counts in the
same manner. The only significant result was an increase in
contact injury risk for the 1-week ‘‘moderate-low’’ (Z score
¼�0.99 to 0) number of decelerations (RR¼ 2.04; 95% CI
¼ 1.0, 4.0; P ¼ .04).

Jaspers et al16 assessed the numbers of accelerations and
decelerations in soccer athletes. ‘‘Likely harmful effects’’
existed for ‘‘high’’ 2-week decelerations (.1462, OR ¼
1.49; 90% CI ¼ 0.92, 2.42), ‘‘high’’ 3-week decelerations
(.2140, OR ¼ 1.68; 90% CI ¼ 1.08, 2.63), and ‘‘high’’ 4-
week decelerations (.2813, OR ¼ 1.73; 90% CI ¼ 1.00,
2.99) when compared with the ‘‘low’’ deceleration group
(,2227).

Acute : Chronic Workload Ratio

Thirteen groups* explored acute : chronic workload ratio
(ACWR) metrics in their analyses of injury risk factors.
The ACWR divides the acute workload (typically 1 week)
by the chronic workload (typically 3 to 6 weeks). The
theory1,30 is that chronic training loads are analogous to a
state of fitness, and acute training loads are analogous to a
state of fatigue. Currently, 2 methods are available for
calculating the ACWR. First is a rolling average ACWR,
which is simply the rolling average of the acute phase

divided by the rolling average of the chronic phase.
Importantly, the workload metrics from all days within a
phase are equally weighted in this model. The second
method, proposed by Williams et al,31 is an exponentially
weighted moving average (EWMA) ACWR, which in-
cludes a time-decay constant that weighs workload values
closer to the end of the chronic phase (more recently) more
heavily than training load values at the beginning of the
chronic timeframe (longer ago). In the next paragraphs, we
highlight the results of studies with significant findings.

Malone et al26 used a 3- to 21-day ratio when calculating
a rolling average ACWR for HSD and found that players
with ratios above 0.85 were at increased risk of injury.
When the ACWR was between 0.86 and 1.00, the OR of
lower extremity injury was 1.20 (90% CI¼ 1.10, 2.03; P¼
.21); between 1.00 and 1.25, the OR was 2.27 (90% CI ¼
2.13, 3.04; P¼ .001); and for ACWR ,1.25, the OR was 3-
fold greater (3.02; 90% CI ¼ 2.53, 4.98; P ¼ .001). When
the same analysis was conducted on SRD, the OR
decreased for ACWR between 0.71 and 0.85 (0.85; 90%
CI ¼ 0.33, 0.95; P ¼ .04). However, for ACWRs between
0.86 and 1.25 and .1.35, the OR increased (OR ¼ 1.14;
90% CI ¼ 1.11, 2.14; P ¼ .02 and OR ¼ 5.00; 90% CI ¼
3.01, 7.38; P ¼ .02, respectively).

Using absolute TD to calculate the 1 : 4-week rolling
average ACWRs and interpreting them through a lens of
magnitude-based inferences, Hulin et al12 determined that,
in the current week, a ‘‘very high’’ ACWR (�2.11) was
associated with an injury risk 6.9 times greater than a ‘‘very
low’’ ACWR of �0.30 (RR¼ 6.9; 90% CI¼ 5.2, 8.6), 3.4
times greater than a ‘‘low’’ ACWR of 0.31 to 0.66 (RR ¼
3.4; 90% CI¼1.4, 5.4), 2.3 times greater than a ‘‘moderate’’
ACWR of 1.03 to 1.38 (RR¼ 2.3; 90% CI¼�2.3, 5.7), and
2 times that of a ‘‘high’’ ACWR of 1.75 to 2.10 (RR¼ 2.0;
90% CI ¼�15.2, 37.2). In addition, a ‘‘very high’’ 2-week
ACWR (�1.88) was associated with a risk of injury that
was 2.2 times greater than a ‘‘low’’ ACWR of 0.46 to 0.74
(RR ¼ 2.2; 90% CI ¼�2.7, 7.1), 1.9 times greater than a
‘‘moderate-low’’ ACWR of 0.75 to 1.01 (RR¼ 1.9; 90% CI
¼ �3.6, 7.4), and 2.4 times greater than a ‘‘moderate’’
ACWR of 1.02 to 1.30 (RR¼ 2.4; 90% CI¼�0.6, 5.4). For
the subsequent week, a ‘‘very high’’ ACWR had a 10-fold
increase in injury risk compared with a ‘‘very low’’ ratio
(RR ¼ 9.8; 90% CI ¼ 6.2, 13.4).

Murray et al13 used the ACWRs for TD, HSD, and player
load (operationally defined in Supplementary Table 2) to
examine injury risk. For injuries occurring in the current
week, players with an ACWR of .2.0 for TD were 5 to 8
times more likely to sustain an injury than players with an
ACWR , 0.49 (RR ¼ 7.98; 90% CI ¼ 5.86, 10.88; P ¼
.015) and between 0.5 and 0.99 (RR¼ 5.04; 90% CI¼ 4.16,
6.11; P ¼ .012). For HSD, an ACWR of .2.0 was
associated with a 6 to 12 times greater injury risk than
ACWRs of ,0.49 (RR¼ 11.62; 90% CI¼ 10.04, 13.45;, P
¼ .006), 0.50 to 0.99 (RR¼9.63; 90% CI¼9.21, 10.07; P¼
.002), and 1.0 to 1.49 (RR¼ 6.54; 90% CI¼ 6.19, 6.92; P¼
.003). Similarly, athletes with an ACWR of .2.0 for player
load had a greater risk of injury than those with an ACWR
of 0.50 to 0.99 (RR¼ 6.27; 90% CI¼ 5.62, 6.00; P¼ .006)
and 1.0 to 1.49 (RR¼ 7.72; 90% CI¼ 7.57, 7.88; P¼ .001).
In this final result, we recognize that the point estimate lies
outside the CI and contacted the authors about this
discrepancy, but they did not respond to our query.*References 9, 10, 12, 14–16, 19, 21, 25–29.
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For injuries occurring in the subsequent week, Murray et
al13 indicated that, during the preseason, athletes with an
ACWR of .2.0 had an increased likelihood of injury
versus players with an ACWR of 1.0 to 1.49 for TD (RR¼
4.87; 90% CI¼ 2.33, 10.21; P¼ .05) and player load (RR¼
12.46; 90% CI¼8.35, 18.59; P¼ .02). Similarly, an ACWR
of .2.0 for HSD compared with an ACWR ratio of
0.50 : 0.99 was associated with an increased likelihood of
injury (RR ¼ 6.46, 90% CI ¼ 4.63, 9.02, P ¼ .02). During
the in-season period, findings were similar. Specifically,
when the ACWR exceeded 2.0, compared with an ACWR
between 1.0 and 1.49, the likelihood of injury increased 4-
fold to 7-fold for TD (RR¼ 5.49; 90% CI¼ 4.19, 7.20; P¼
.02), HSD (RR¼ 4.36; 90% CI¼ 3.50, 5.43; P¼ .02), and
player load (RR ¼ 5.80; 90% CI ¼ 4.62, 7.27; P ¼ .01).

Over a single season, Bowen et al9 evaluated TD, HSD,
number of accelerations, and total load (operationally
defined in Supplementary Table 2) in the context of ACWR
using rolling averages and a 1 : 4-week ratio. Relative risk
was determined by comparing injury risk with all other
ACWR categories. For overall ACWR, the RR of contact
injury was increased to 4.98 (P , .05) for a ‘‘very high’’ TD
ratio (�2.0). Conversely, a decrease in overall injury risk
(RR¼ 0.47, P , .05) was present for athletes with a ‘‘low’’
HSD ACWR (�1.99 to �1.00). For accelerations, an
increased RR of contact injury of 4.98 occurred at ‘‘very
high’’ ACWR (�2.0; P , .05). Lastly, for overall total load
ACWR, the RR of contact injury was 1.92 among players
with ‘‘moderate-low’’ ACWR (P , .05) and the RR of
noncontact injury was 1.87 among players with ‘‘moderate-
high’’ ACWR (P , .05).

Another study by Bowen et al10 spanned 3 soccer seasons
and demonstrated significant findings in TD, low-intensity
distance, and accelerations in relation to injury when using
a rolling average ACWR method. For TD, a ‘‘very high’’
ACWR (�2.0) increased the RR of noncontact and overall
injury (3.67, P , .05, and 2.40, P , .05, respectively), a
‘‘moderate to high’’ ACWR (0.00–0.99) increased the RR
of contact injury (2.03, P , .05), and a ‘‘low’’ ACWR
(�1.99 to �1.00) increased the overall injury risk (RR ¼
0.19, P , .05). For low-intensity distance, a ‘‘moderate to
high’’ ACWR (0.00–0.99) was associated with increased
RRs for both contact and overall injuries (2.60, P , .05,
and 1.91, P , .05, respectively), and a ‘‘very high’’ ACWR
(�2.0) had increased RRs for both noncontact and overall
injuries (3.93, P , .05, and 2.56, P , .05, respectively).
For the numbers of accelerations and decelerations, both
categories of ‘‘moderate to high’’ ACWR (0.00–0.99) and
‘‘very high’’ ACWR (�2.0) had increased injury risk
associations. For a ‘‘moderate to high’’ ACWR, the RR
increased to 1.57 (P , .05) for overall injury and 1.99 (P ,
.05) for contact injury for accelerations and decelerations,
respectively. In the ‘‘very high’’ ACWR category of
accelerations, noncontact (RR¼ 3.86, P , .05) and overall
(RR¼ 2.52, P , .05) injury risk increased, and in the same
category for decelerations, the risk also increased for both
noncontact and overall injuries (RR ¼ 3.73, P , .05, and
RR ¼ 2.44, P , .05, respectively).

Jaspers et al16 investigated the average 1 : 4-week ACWR
for the workload metrics of TD, HSD, accelerations, and
decelerations. A ‘‘likely harmful’’ effect for a ‘‘high’’
ACWR was present for HSD (.1.18, OR¼ 1.71; 90% CI¼
0.90, 3.26), a ‘‘very likely beneficial’’ effect occurred for a

‘‘medium’’ ACWR for decelerations (0.86–1.12, OR¼0.38;
90% CI¼0.20, 0.72), and ‘‘likely beneficial effects’’ existed
for a ‘‘medium’’ ACWR for accelerations (0.87–1.12, OR¼
0.49; 90% CI ¼ 0.24, 1.02).

Acute : Chronic Workload Ratio With High or Low
Chronic Workloads. Bowen et al9 observed that the ‘‘low’’
TD ACWR group, when combined with a 4-week low
chronic workload, had an associated decrease in overall
injury (RR¼ 0.28, P , .05). Similar results were noted in
the ‘‘low’’ acceleration group (RR ¼ 0.29, P , .05).
Regarding HSD, the noncontact injury risk increased in the
‘‘high’’ group (RR ¼ 2.55, P , .05). Evaluating ACWR
with high chronic loads demonstrated an increased RR of
injury in the ‘‘moderate-high’’ HSD group (2.09; 95% CI¼
1.06, 4.12; P ¼ .02). In this study,9 each group was
compared with all other groups.

Hulin et al27 combined TD ACWR with short and long
between-matches recovery times and showed that a ‘‘high’’
ACWR (1.23–1.61) during short between-matches recovery
times was linked with a risk of match injury that was 2.88
times greater than a ‘‘moderate-high’’ ACWR combined
with short between-matches recovery times (RR ¼ 2.88;
90% CI¼ 0.97, 8.66). The risk of match injury with a ‘‘very
high’’ ACWR (�1.62) combined with short recovery
between matches was (1) 5.80 times greater (90% CI ¼
1.75, 9.91) than a ‘‘moderate-high’’ ACWR and (2) 3.41
times greater (90% CI ¼ 1.17, 9.91) than a ‘‘low’’ ACWR.
With respect to long between-matches recovery times, a
‘‘very high’’ ACWR (�1.50) had a risk of match injury that
was 4.46 times greater (90% CI ¼ 0.91, 21.91) than a
‘‘moderate-high’’ ACWR. Recovery time between matches
did not independently affect injury risk in the subsequent
match.

Hulin et al12 examined TD ACWR alongside high and
low chronic workloads. Of note, a high chronic workload
(.16 095 m) combined with a ‘‘very high’’ 2-week average
ACWR (�1.54) was associated with a greater risk of injury
than a ‘‘high’’ chronic workload combined with the
following workload ratios: ‘‘low’’ (0.67–0.84, RR ¼ 3.0),
‘‘moderate-low’’ (0.85–1.02, RR¼ 3.8), ‘‘moderate’’ (1.02–
1.18, RR ¼ 4.6), ‘‘moderate-high’’ (1.19–1.35, RR ¼ 4.0),
and ‘‘high’’ (1.36–1.53, RR ¼ 2.4). Additionally, a low
chronic workload (,16 095 m) combined with a ‘‘very
high’’ 2-week average ACWR (�2.17) was associated with
greater injury risk than a low chronic workload combined
with the following workload ratios: ‘‘low’’ (0.31–0.66, RR
¼ 2.3), ‘‘moderate-low’’ (0.67–1.02, RR¼ 1.8), ‘‘moderate’’
(1.03–1.37, RR ¼ 2.0), and ‘‘high’’ (1.75–2.16, RR ¼ 3.1).

Additionally, Bowen et al10 explored both ‘‘high’’ and
‘‘low’’ chronic load in relation to ACWR. ‘‘High’’ and
‘‘low’’ chronic loads were defined using the median of the
4-week total for the given metric. For the combination with
‘‘high’’ chronic loads, only overall injuries were reported,
and the only significant finding was an increase in injury
risk with ‘‘moderate-to-high’’ (0.96–1.18) low-intensity
distance ACWR (0.96–1.18, RR ¼ 2.08, P , .05). When
ACWR was combined with low chronic load, significant
findings included an increase in noncontact injuries (RR ¼
4.50, P , .05) for TD ‘‘very high’’ ACWR (2.14); increases
in noncontact and overall injuries (RR ¼ 5.39 and 2.76,
respectively; P values , .05) for low-intensity distance
‘‘very high’’ ACWR (2.15); increases in noncontact and
overall injuries (RR¼ 5.90, P , .001, and RR¼ 3.18, P ,
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.05, respectively) for acceleration ‘‘very high’’ ACWR
(2.30); and increases in noncontact and overall injuries (RR
¼ 6.58, P , .001, and RR¼ 3.47, P , .05, respectively) for
deceleration ‘‘very high’’ ACWR (2.32).

Rolling Average ACWR and EWMA ACWR. Two
groups28,29 evaluated injury risk using different methods to
calculate ACWR. Murray et al29 used 7 : 28-day rolling
averages and found that, in the preseason period, players
with ACWRs of .2.0 for TD were at increased risk of
injury compared with those who had an ACWR of 1.0 to
1.49 (RR¼ 8.41; 95% CI¼ 1.09, 64.93; P¼ .048). No other
relationships were observed between the rolling average
ACWR and injury risk during the preseason period.
According to the EWMA ACWR model with a 7 : 28-day
timeframe in the preseason, several relationships were
present between an ACWR of .2.0 and an increased injury
risk versus lower ACWR ranges. Specifically, compared
with an ACWR of 1.0 to 1.49, the risk of injury was
increased 6-fold to 9-fold for TD (RR ¼ 8.74; 95% CI ¼
7.35, 10.39; P ¼ .002), moderate-speed distance (RR ¼
6.03; 95% CI¼2.21, 16.47; P¼ .03), and player load (RR¼
9.53; 95% CI ¼ 5.3, 17.11; P ¼ .01).29

During the in-season period, a rolling average ACWR of
.2.0 was associated with an increased risk of injury versus
a lower ACWR for a number of training metrics.29 When
compared with an ACWR of 1.0 to 1.49, an ACWR of .2.0
was linked with an increase in injury risk for TD (RR ¼
6.52; 95% CI ¼ 4.83, 8.80; P ¼ .008), HSD (RR ¼ 4.66;
95% CI¼4.12, 5.27; P¼ .004), and player load (RR¼5.87;
95% CI¼ 4.12, 8.36; P¼ .01). Via the EWMA calculation,
athletes who exceeded an ACWR of .2.0 experienced an
injury risk 13 to 21 times greater than those who
maintained an ACWR of 1.0 to 1.49 for TD (RR ¼ 21.28;
95% CI¼ 20.02, 22.62; P¼ .001), moderate-speed distance
(RR¼ 18.19; 95% CI¼ 17.17, 19.27; P¼ .001), and player
load (RR ¼ 13.43; 95% CI ¼ 12.75, 14.14; P ¼ .001).29

Sampson et al28 compared a rolling average ACWR with
an EWMA ACWR in American football players. With an
EWMA ACWR and a 3-day injury lag (injury reported
within 3 days of the evaluated ratio was associated with that
previous ratio), the risk of injury with a high ACWR
(.1.30) compared with a moderate ACWR (0.8–1.30) was
very likely (RR¼ 3.33; 90% CI¼ 1.35, 8.19) and similar to
that with a low ACWR (,0.8, RR¼ 3.05; 90% CI¼ 1.38,
6.76). When the authors compared the EMWA ACWR with
a rolling average ACWR, the former had an R2 ¼ 0.54 (3-
day injury lag) in modeling using a 7:21-day comparison.
When they used other comparisons (ie, 7 : 14-day, 7 : 21-
day, and 7 : 28-day) and also evaluated rolling averages
ACWR, the next highest R2 was for EMWA ACWR at R2¼
0.19.

Multivariate Models

Bacon and Mauger17 calculated a simple linear regression
to predict the incidence of overuse injuries based on TD
and HSD assignment to ‘‘low,’’ ‘‘normal,’’ or ‘‘high’’
groups. A significant regression equation contained only
the TD variable (F1,39¼ 6.482, P¼ .02, R2¼ 0.14). Injury
incidence rate per 1000 hours was decreased by �5.835
times when moving upward from 1 TD loading group to the
next, meaning a higher TD loading group lowered the risk
of an overuse injury.

Malone et al25 also assessed HSDs in combination with
training loads. Players who had higher 21-day chronic
training loads (�2584 AU) were at reduced risk of injury
when they covered 1 weekly HSD of 701 to 750 m
compared with the reference group of ,674 m (OR¼ 0.65;
90% CI ¼ 0.25, 0.89; P ¼ .024). Conversely, athletes who
exerted low chronic training loads (�2584 AU) and
covered the same distance of 701 to 750 m were at greater
risk of injury versus the reference group of ,674 m (OR¼
3.12; 90% CI ¼ 2.99, 4.54; P ¼ .04). Similar trends were
observed for SRD with higher 21-day chronic training
loads: players pursued increased high-speed and sprint
running distances with reduced injury risk.25

Colby et al26 used a mixed-model generalized estimating
equation to analyze the relationship between weekly data
and injury in the subsequent week. In their multivariate
model of highest predictive accuracy, they found that a
‘‘low’’ chronic distance coupled with a ‘‘very high’’ distance
ACWR was associated with an increased risk (adjusted
incidence rate ratio [adjusted IRR]¼ 2.60; 95% CI¼ 1.07,
6.34) compared with an above-average chronic load and
moderate ACWR. In addition to workload variables,
playing experience, heavy nonfootball activity, and a
history of lower limb pain retained significance in the
multivariate model as in the univariate models (adjusted
IRR¼ 2.02–2.25; 95% CI¼ 1.02, 4.95). Colby et al26 noted
the predictive accuracy of the multivariate model (area
under the curve [AUC] ¼ 0.70; 95% CI ¼ 0.64, 0.75) was
better (P , .001) than in all univariate models (AUC ¼
0.52–0.60) when tested on in-sample data. In addition,
cross-fold validation results of simulated data indicated a
very similar fit (k¼ 10: univariate root mean square error¼
0.16 6 0.02 versus multivariate root mean square error ¼
0.16 6 0.02) on out-of-sample data.

In another study, Colby et al,19 using a multivariate
model across the full in-season phase of Australian rules
football, demonstrated that a ‘‘very low’’ (,108 km) late
preseason (January to mid-February) distance placed
players at greater injury risk compared with moderate
(125–164 km) loads (OR ¼ 5.6; 95% CI ¼ 1.4, 22.8; P ¼
.02). Similarly, ‘‘low’’ (76–88 km) precompetition (mid-
February to mid-March) distances compared with moderate
(89–112 km) distances increased the injury risk (OR¼ 6.0;
95% CI ¼ 1.6, 23.3; P ¼ .01). In addition, a ‘‘very high’’
distance covered (.170 km) during early preseason
(November and December) was associated with greater
in-season injury risk (OR¼ 3.2; 95% CI¼ 1.3, 8.5; P¼ .02)
versus a moderate distance (95–143 km).

To advance the multivariate modeling, Colby et al21

published another paper in 2018 that addressed high-risk
workload scenarios. Of the proposed high-risk scenarios,
exposure to maximum speed (the number of times a player
was at .85% of maximum speed) had the most interesting
findings. The authors divided the scenario into 8- and 4-
week timeframe subcategories, labeling them as ‘‘most
significant’’ and ‘‘most practical,’’ respectively. These
designations were selected because, although 8 weeks had
the best predictive features, in real-life application, 8 weeks
may be too long to collect and apply the data, depending on
the setting. The exposure to maximum velocity was divided
into 5 categories (‘‘very low’’ to ‘‘very high’’), with the
‘‘moderate’’ category serving as the reference group. For
both the 8- and 4-week timeframes, the ‘‘low,’’ ‘‘moderate,’’
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and ‘‘very high’’ categories had good specificity (ability to
identify players who were not injured), but low sensitivity
(did not identify players who were injured; 8 weeks: ‘‘low’’:
sensitivity¼ 0.13, specificity¼ 0.83; ‘‘moderate’’: sensitiv-
ity ¼ 0.05, specificity ¼ 0.80; ‘‘very high’’: sensitivity ¼
0.18, specificity¼ 0.86; 4 weeks ‘‘low’’: sensitivity¼ 0.11,
specificity¼ 0.83; ‘‘moderate’’: sensitivity¼ 0.11, specific-
ity ¼ 0.84; ‘‘very high’’: sensitivity ¼ 0.11, specificity ¼
0.90).

Windt et al14 created 2 multivariate models to quantify
the effect of preseason participation on injury risk while
controlling for training-load variables. The first model
evaluated the likelihood of injury in the current week, and
even though it was associated with reduced odds of an
injury, it was not significant (OR ¼ 0.85; 95% CI ¼ 0.70,
1.02). Similarly, when preseason participation and acute
distance were controlled, a greater percentage of distance
run at high speeds appeared to be associated with an
increased injury risk (OR ¼ 1.27; 95% CI ¼ 0.99, 1.63).
Finally, as with the univariate models, greater acute
distance was associated with a reduced likelihood of injury
(OR ¼ 0.56; 95% CI ¼ 0.3, 0.87). The second model
demonstrated the likelihood of injury in the subsequent
week from the metrics of preseason participation, acute
distance, and acute percentage of distance run at high
speeds. In this model, when distance and percentage of
distance at high speed were controlled, increased preseason
participation (at least 10 full preseason sessions completed)
was associated with a reduced likelihood of injury (OR ¼
0.83; 95% CI ¼ 0.70, 0.99). In this model, neither acute
distance nor percentage of distance run at high speeds was
significantly associated with injury risk in the subsequent
week.

A few researchers furthered attempts at predictive
modeling by using analytic methods such as random
forest32,33 and support vector machines33 along with
generalized estimating equation (GEE) modeling. Thornton
et al32 used GEE and random forest models to determine
which training load variables were most important in
understanding injury among positional groups of a rugby
team (hit-up forwards, adjustables, wide-running forwards,
and outside backs). Specifically, for the adjustables group
(in order of importance), the total load (TL) variables
recognized were 7-day TD, 7-day high metabolic power
distance, high metabolic power distance ratio, 28-day HSD,
and 21-day high metabolic power distance, in which the
model quasilikelihood under independence model criterion
(QIC) was 566.5, and the statistical significance of these
measures ranged from P ¼ .001 to .091. For the hit-up
forwards group, identified variables were session (s)RPE-
TL ratio, 14-day TD, 14-day high metabolic power
distance, 7-day sRPE-TL, and 28-day high metabolic
power distance, in which the QIC was 441.7, and the
significance of these measures ranged from P ¼ .006 to
.138. The outside-back models indicated that 21- and 28-
day sRPE-TL, 7-day HSD, high metabolic power distance
ratio, and TD ratio were most associated with injury risk,
with a QIC of 406.6 and significance of these measures
ranging from P ¼ .092 to .225. For the wide-running
forward group, sRPE-TL ratio, HSD ratio, 14-day high
metabolic power distance, 14-day TD, and 7-day sRPE-TL
were the most likely contributors to injury risk, with a QIC
of 410.5 and significance ranging from P ¼ .068 to .830.

The random forest models of Thornton et al32 indicated
that, for the adjustables group, the relative importance of
TL variables was similar. The mean (6 SD) receiver
operating characteristic (ROC) of the random forest models
was 0.74 6 0.24. For the hit-up forwards group, 7-day
sRPE-TL and 14-day high metabolic-power distance were
associated with the greatest importance in injury, in which
the mean model ROC was 0.65 6 0.06. Variables
recognized for the wide-running forward group varied
substantially among athletes. The mean model ROC was
0.64 6 0.05. Similarly, for the outside back group, the
importance of TL variables varied between players,
showing a large discrepancy for TD ratio and 28-day
sRPE-TL. These models had a mean ROC of 0.64 6 0.04.

DISCUSSION

Our aim in this review was to evaluate the current
evidence for using GPS–derived metrics for injury
prediction in team-based field-sport athletes. Many distinct
workload metrics were associated with an increased injury
risk in individual studies performed in particular sport
circumstances; however, the body of evidence was
inconclusive as to whether any specific metrics could
consistently assess the injury risk across multiple team-
based field sports. Areas of concern that led to this
conclusion included disparate methods of tracking injury
and statistical analysis and overly ambitious claims about
relatively new technology studied in small samples of
athletes. The heterogeneity in study methods not only
precluded the calculation of a meta-analysis in our review
but also limits the generalizability of many of the reported
results to teams and athletes not involved in the original
studies.

Injury Tracking

Possibly the simplest topic to resolve is the various
definitions of injury used. A mix of acute, overuse, chronic,
upper body, lower body, time-loss, and match-loss injury
definitions were used with minimal uniformity across
studies. Given that the GPS–derived metrics monitor total
workload over time and generally workload applied to the
lower extremity, these metrics appear best suited to
forecasting lower extremity overuse injuries. One exception
to this would be when monitoring changes in HSD and its
effects on acute hamstrings injury, as this injury was
previously linked to the eccentric loads that occur during
sprinting.34–36

Regarding injury variables, a binary (injured or not-
injured) classification based on a time-loss metric is easy to
understand and collect uniformly. However, given the
breadth of the GPS metrics and nuances of injury
definitions in sport, especially overuse injury, these data
may be best captured on a daily ranking scale of player
availability based on ongoing musculoskeletal concerns,
even if those concerns do not rise to the level of an injury
report or time-loss injury. The current dichotomous
reporting of injury status (injured, not injured) is conve-
nient and easy to record, yet it misses the nuances of
contemporary sports medicine in which athletes are often
partial participants in practices due to their injury status.
Our recommendation in this area is 2-fold. First, within the
realm of practical sports science in which data are collected
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daily by sports medicine and sports performance staff and
then analyzed retrospectively, we advise the use of the 4-
tier injury and participation classification scheme described
by Ahmun et al37 in response to the recent consensus
statement on injury surveillance in cricket.38 The 4 tiers are
(1) fully available for training and matches, with no injury
or illness, (2) fully available for training and matches but
with an injury or illness, (3) available for selection in a
major match but with modified activity due to injury or
illness, and (4) unavailable for selection in a major match
due to injury or illness. These categories mirror injury
reports commonly used in the clinical practice of sports
medicine within organized sport and allow high-level
tracking of both transient and time-loss injuries. Second,
from a research and modeling perspective, knowing the
injury mechanism, cause, and tissue type is important as it
may lead to an understanding of how to best model
different injury types using the collected data. To
accomplish this, studies must be conducted in a prospective
manner and may involve more daily engagement of the
researchers to avoid burdening the sports medicine staff.

Statistical Analysis

Stratifying workload metrics into binned categories (ie,
low, medium, high) allows for easier modeling and
interpretation of results in an individual study; however,
these groupings are typically based on the Z scores of 1
team. Differences in injury risk may have occurred within
specific workload groupings, but the generalizability of
these results to teams and athletes other than those studied
is limited. For example, the difference in SRD between
workload groups of approximately 200 m over 1 week or
exposures to maximum velocity that vary by less than 5 m
is most likely not practically meaningful; when workload
metrics are grouped in this fashion, understanding the
injury risk as a player moves 1 level on the scale is
impossible.20,21 Valuable information may be lost with
stratification,39 especially without research-based cut
points. These models treat all data within the group the
same and look for differences between groups when, in
reality, this early in the field of GPS variables, researchers
do not yet know if the upper threshold of a ‘‘low’’ group and
the lower threshold of a ‘‘medium’’ group are truly different
enough to be separated. The use of workload metrics on a
continuous scale, rather than in stratified categories, is
likely a more appropriate way to apply these measures to
assess injury risk. If groupings are needed, basing them on
population-based metrics (ie, ‘‘high-speed’’ running veloc-
ity for professional soccer players across an entire league,
not just a single team) or groupings that are specific to each
individual in the analysis is encouraged. Further analysis of
how groupings of various levels affect injury risk
calculations is indicated.

Magnitude-based inferences are another statistical choice
that, in theory, attempt to make results more practical when
the sample is small40,41; however, their mathematical
grounding has been refuted.42,43 Researchers and practi-
tioners should be cautious when considering the use of
magnitude-based inferences in their work and when
interpreting the results of others. In our review, the authors
of 5 studies12,13,15,16,29 used magnitude-based inferences in
their analyses. We cited their interpretation thresholds in

quotation marks to signify that these are the interpretations
of the original investigators. We also clearly designated this
analysis approach in Supplementary Table 2. We believed
it was important to include these papers because the studies
were pertinent to this body of literature, albeit the original
authors’ interpretations may not be valid.

Other statistical variances that require attention in this
body of research moving forward include appropriate
sample-size calculations for the number of predictors that
researchers intend to use in their models.44 Using pseudo-R2

statistics, Lolli et al,45 in their 2019 paper on perceived
exertion, session duration, and hamstrings injury, deter-
mined that sample sizes of 329, 583, or 1166 players were
needed for 1, 5, or 10 load-related predictors, respectively.
None of the studies in this review came close to those
sample sizes.

In assessing injury risk, it is also important that both
authors and readers understand and interpret the differences
between injury rates and injury risk. From afar, the nuances
of the 2 calculations can be easily overlooked, but the
interpretation differences are critical, especially when
comparing results. Additionally, when discussing injury
risk, researchers should always report CIs to address the
precision of the measurement and in the interpretation of
the results.

The variations in statistical analysis among the papers
reviewed were notable and reflect the larger conversation
about statistics in sports medicine regarding a shift to
complex approaches versus conventional, reductionist
methods. It is becoming widely accepted that injuries occur
as a result of complex and nonlinear interactions among
multiple variables and that conventional approaches, even
multivariable ones, are unlikely to capture the dynamic and
complicated nature of injuries.46,47 A reductionist approach
assumes that the parts of the model can be broken down,
examined individually, and then summed to represent the
system as a whole.47 Even multivariable approaches can be
limited by the assumption that a system is equal to the sum
of its parts.48 Reductionist approaches should be used to
inform the creation of complex modeling, yet their
standalone utility in prediction (if this is the ultimate goal)
is questionable. With all models, a validation study of
unseen data should be completed before causation with
injury is implied. Without validation, these models can only
be considered to offer descriptive associations rather than
true prediction. Implementing complex models may be
difficult in a practical setting; however, the advantages of
more accurate injury risk models should outweigh the
implementation concerns. The authors of 2 studies25,32 in
this review attempted to use complex approaches when
analyzing their data and may serve as exemplars as the field
advances.

Assertions Made by Authors

From its inception, the novelty of GPS technology to
monitor athlete workload was captivating to sports
performance and sports medicine researchers. As work in
this area began, many of the methods used to analyze these
data and interpret results linked to injury prevention were
published in editorials or commentary articles rather than in
original research papers with quantitative analyses.1,49,50

More recently, others51 have authored editorials expressing
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concerns regarding the use of these claims in research
without further validation.

One highly debated metric that originated in research but
was propagated by editorials was the ACWR.31,52–54 This
metric is prominent in the papers we reviewed, with many
claims about its ability to predict injury. The relative
simplicity of the ACWR has been complicated by the
various ways investigators have used to calculate it
(different numbers of days for acute and chronic periods,
rolling averages versus EWMA, etc) and the broad array of
metrics used to define player workload. Additionally, using
chronic load as a modifier to the ACWR presents a
potential mathematical error, as the ratio already uses the
chronic load value to normalize the acute load.55 Due to
these variations, direct comparisons between articles and
understanding what specific values of ACWR may be
signaling present challenges. Others56,57 have refuted the
utility of ACWR in injury prediction, suggesting the metric
may be signaling another confounding factor to injury risk,
such as match congestion during a season.

Additionally, when interpreting the results of a univariate
analysis, authors and readers should be cautious in
attempting prediction, as variables may be associated with
injury without meeting the threshold for direct causation.
Difficulty understanding the nuances of association versus
prediction may result in practitioners concluding that a
factor associated with injury risk can be used to predict, and
ultimately prevent, injury.58 In turn, this may lead to
incorrect inferences from spurious data. In the context of
injuries, association can help identify individual factors in
the overall puzzle of why injuries occur but only at a
theoretical level.59

Limitations of Existing Research and Suggestions for
Future Research

We evaluated 22 original research articles that involved a
total of 1136 athletes who sustained 2045 total injuries over
40 team-seasons. The vast majority of this research was
based on analyses of relationships for a single team over 1
season. Troublingly, none of the investigations included
female athletes. Furthermore, without standardization of
injury definitions and GPS–derived workload metrics,
replication and meta-analysis are impossible. A prediction
model based on a single team also decreases generalizabil-
ity to other populations.

A focus on hypothesis-driven research would help to
overcome many of the concerns addressed in this review.
Studies of GPS technology often occur when a team is
collecting data for a performance-related reason, and the
dataset is provided to a researcher post facto to assess the
relationships of workload metrics and injury. By identifying
the research questions, variables (especially injury-related
variables), and the best statistical approaches a priori, data
can be collected in a manner that lends itself to more
complex and appropriate statistical modeling in order to
identify true cause and effect.

As methods in this field become more robust and uniform
in manner, using different scales to critically appraise the
research will become possible. We elected to use the
National Institute of Health Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies; howev-
er, other methodologic quality-assessment instruments such

as the Prediction Model Risk Of Bias Assessment Tool60

and Quality in Prognosis Studies61 may be more specific to
injury risk research.

CONCLUSIONS

Our results were inconclusive in determining if any
specific GPS–derived workload metrics were associated
with increased injury risk. This conclusion is due to a
myriad of factors, including differences in injury defini-
tions, workload parameters, and statistical analysis em-
ployed across studies. Global positioning system
technology in sport is still in its infancy, especially in
regard to sports medicine research. As researchers and
practitioners gain knowledge about how sensor-based
wearable technology can inform injury risk and athlete
wellness, more consistent approaches to data aggregation
and modeling need to be at the forefront.
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