
Journal of Athletic Training 2021;56(9):1042–1049
doi: 10.4085/1062-6050-0368.20
� by the National Athletic Trainers’ Association, Inc
www.natajournals.org

Patient-Reported Outcomes & Applied Statistics

Anchored Minimal Clinically Important Difference
Metrics: Considerations for Bias and Regression to the
Mean

Matthew S. Tenan, PhD, ATC*†; Janet E. Simon, PhD, ATC‡§;
Richard J. Robins, MD||¶; Ian Lee, PT, DSc*; Andrew J. Sheean, MD#;
Jonathan F. Dickens, MD¶**††

*Defense Health Management Systems, Rosslyn, VA; †Optimum Performance Analytics Associates, Apex, NC;
‡College of Health Sciences and Professions and §Ohio Musculoskeletal and Neurological Institute, Ohio University,
Athens; ||United States Air Force Academy Ambulatory Surgical Center, Colorado Springs; ¶Uniformed Services
University of the Health Sciences, Bethesda, MD; #San Antonio Military Medical Center, Fort Sam Houston, TX;
**Walter Reed National Military Medical Center, Bethesda, MD; ††John A. Feagin, Jr Orthopaedic Sports Medicine
Fellowship, West Point, NY

Minimal clinically important differences (MCIDs) are used to
understand clinical relevance. However, repeated observations
produce biased analyses unless one accounts for baseline
observation, known as regression to the mean (RTM). Using an
International Knee Documentation Committee (IKDC) survey
dataset, we can demonstrate the effect of RTM on MCID values
by (1) MCID-estimate dependence on baseline observation and
(2) MCID-estimate bias being higher when the posttest-pretest
data correlation is lower. We created 10 IKDC datasets with
5000 patients and a specific correlation under both equal and
unequal variances. For each 10-point increase in baseline
IKDC, MCID decreased by 3.5, 2.7, 1.9, 1.2, and 0.7 points

when posttest-pretest correlations were 0.10, 0.25, 0.50, 0.75,

and 0.90, respectively, under equal variances. Not accounting

for RTM resulted in a static 20-point MCID. Minimal clinically

important difference estimates may be unreliable. Minimal

clinically important difference calculations should include the

correlation and variances between posttest and pretest data,

and researchers should consider using a baseline covariate-

adjusted receiver operating characteristic curve analysis to

calculate MCID.
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I
n recent years, the difference between statistically
different and clinically important changes in patient-
reported outcomes (PROs) has become widely accept-

ed, and it has become increasingly common for authors to
report the minimal clinically important difference (MCID)
and substantial clinical benefit (SCB) for a number of
measures intended to quantify and characterize patients’
responses to different interventions. Two types of MCID
metrics are commonly used: distributional and anchored.
Distribution-based MCIDs typically rely on the standard
error of measurement, straight SD calculations from sample
data, or the minimal detectable change1; however, no
information related to clinical relevance is contained in
these distributional metrics, so their clinical interpretability
may be limited. Anchor-based MCIDs are typically
produced by using change over time to predict a binary
outcome in a receiver operating characteristic (ROC) curve
analysis. This binary outcome is the anchor, which conveys
the clinical-outcome information of interest. The purpose of
MCID and SCB metrics has been well intended, but the
actual execution and application of these metrics in the
literature may be problematic given the methods commonly

used to calculate these values. For example, many MCID
and SCB values have been reported for the same
instrument. Although the discrepancies among studies are
commonly attributed to population differences, a number of
other potential sources of error exist: (1) MCID and SCB
calculations are often anchored to different outcomes,
which will naturally result in different MCID and SCB
estimates; (2) MCID and SCB metrics are commonly
presented as a single estimate when they should be reported
with the corresponding CIs (ie, actual error variance around
estimates is seldom reported); and (3) MCID and SCB
metrics are calculated with D scores, making them
susceptible to regression to the mean (RTM). In this
technical note, we detail the potential concern about how
RTM may bias existing MCID and SCB metrics in the
sports medicine literature.

Repeated observations of a patient produce biased
analyses unless the baseline observation is accounted for
statistically, a phenomenon known as RTM. Regression to
the mean was first documented by Galton2 in 1886 and
termed regression to mediocrity. Whereas RTM is often
taught in undergraduate health science curriculums, Gal-
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ton’s example of parents with above-average height tending
to have shorter offspring can seem esoteric and not
applicable to a sports medicine setting. A statistically
identical but more easily understood example of RTM
commonly observed in sports medicine occurs when
multiple range-of-motion measurements are obtained for a
single group of patients. Patients who present with extreme
range of motion at their first visit will naturally tend toward
more average ranges of motion at later visits, and the same
is true for those who initially present with restricted ranges
of motion. This statistical phenomenon is due to both
measurement error and inherent variation in the phenom-
enon being measured.3,4 The effects of RTM can be
accounted for or mitigated in a number of ways, but the
most common and effective statistical method is to use
analysis of covariance in which the baseline score is a
covariate in the model.3 How this baseline covariate is able
to account for RTM can be seen in Figures 1 and 2: the
change across time (observed D of posttest pretest [post-
pre] data) is highly related to the baseline score (pretest
data), and the level of this relatedness depends on the
correlation between the posttest and pretest data (ie, the
slope of the regression line is greater when the correlation
between posttest and pretest data is lower). Whereas it is
widely accepted that analysis of covariance can be used to
account for the effects of RTM on model estimates in
regression analyses, it is less well recognized that not
accounting for RTM can substantially bias nearly all
models with repeated measures, including the ROC curve–
based MCID and SCB metrics.

The purpose of this technical note is to demonstrate how
existing anchored MCID and SCB estimates are biased by
RTM. The methods for calculating MCID and SCB are
identical and differentiated only by whether one judges the
anchor to be minimal or substantial. For simplicity, we will
demonstrate the RTM concern with MCIDs, but this work
can be extended to SCB. Using a simulated International
Knee Documentation Committee (IKDC) survey dataset,
we can demonstrate the effect of RTM on MCID values by
evaluating 2 classic characteristics of RTM: (1) MCID
estimates are highly dependent on the magnitude of the
baseline observation5 and (2) the effect of the baseline
observation on MCID estimates is higher when the
correlation between the posttest and pretest measurements
is lower.3,5

METHODS

Data Simulation

Ten simulated datasets containing post-pre data for the
IKDC survey (score range ¼ 0–100) were created via
statistical simulation. Each dataset consisted of 5000
patients and had a designated correlation between the
posttest and pretest data. The 10 datasets were divided into
2 types: 1 in which the variances between posttest and
pretest data were equal and 1 in which they were unequal.
In the equal-variances datasets, the pretest (baseline) values
were normally distributed (SD¼20) and centered at 45, and
the posttest values were normally distributed (SD¼ 20) and
centered at 65. In the unequal-variances datasets, the pretest
(baseline) values were normally distributed (SD ¼ 20) and
centered at 45, and the posttest values were normally
distributed but with a dispersion 50% greater than that of

the pretest data (SD¼ 30) and centered at 65. Each dataset
was simulated so that the posttest-pretest data had
correlation coefficients of 0.10, 0.25, 0.50, 0.75, and 0.90.
The binary outcome, on which MCID calculations were
based, was simulated using a Bernoulli distribution, in
which a positive outcome was more likely when the
difference between posttest and pretest values was 20. The
code for all data simulations, analyses, and figures was
written in R (version 3.6.2; The R Project for Statistical
Computing) programming language and can be found at
https://osf.io/56u37/.

The MCID Calculations

The widely used method for determining an anchored
MCID or SCB in the orthopaedic and sports medicine
literature leverages the ROC curve analysis.6–9 The
difference (D) between the posttest and pretest values is
calculated (ie, posttest – pretest¼D), and then this D score
is used to predict the binary outcome of the ROC curve
analysis. In practice, the binary outcome is often a
dichotomized continuous or ordinal variable (eg, Did an
athlete return to play in ,10 days? yes or no), but it can
also be anchored to a true binary outcome (eg, Did an
athlete return to sport after surgery? yes or no). The
researcher then determines the MCID from the ROC curve
by attempting to balance specificity and sensitivity using
either the top-left corner method or Youden index (J),
although the Youden J has been shown to be less biased.10

It is well known that RTM can be accounted for in a
regression analysis by using the baseline measure as a
covariate.3 Covariate-adjusted ROC curve analyses are a
relatively recent statistical development11 and exist in
several forms, incorporating both frequentist and Bayesian
approaches and nonlinear covariates.11–13 Given the appro-
priate background of the investigator, any of these options
are viable for controlling for RTM in an MCID calculation.
For our analysis, we used a 1-dimensional continuous
covariate (baseline IKDC score) based on the induced
nonparametric ROC curve to calculate a baseline-adjusted
MCID for each of the 10 simulated datasets.12 Similar to
the standard MCID calculation method, the MCID was
extracted from the covariate-adjusted ROC curve analysis
via the Youden J index. To examine the statistical
implications and summarize the magnitude of change, we
fit a linear regression between the estimated MCID and the
observed baseline.

RESULTS

For each of the 5 datasets examining equal variances, the
baseline observed IKDC score influenced the MCID
estimates (P values , .001). As evidenced by the
regression coefficients for the observed baseline IKDC
score, the magnitude of effect on the MCID estimate was
larger when the post-pre scores had a lower correlation. For
every 10-point increase in baseline IKDC score, MCID
decreased by 3.5, 2.7, 1.9, 1.2, and 0.7 points in the dataset
in which post-pre correlations were 0.10, 0.25, 0.50, 0.75,
and 0.90, respectively (Figure 3). When the baseline
observations range from 35 to 60 points and account for
RTM, the calculated IKDC MCID can vary substantially,
ranging from 14 to 24 points based on the magnitude of
correlation between posttest and pretest values (Figure 3A).
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Figure 1. Plots of the D (posttest�pretest¼ D) against the observed baseline data (ie, pretest data) for various levels of posttest-pretest
data correlation under the scenario of equal variances. A, 0.10 correlation. B, 0.25 correlation. C, 0.50 correlation. D, 0.75 correlation. E,
0.90 correlation. The linear regression lines and equations are plotted to depict that the slope of the correlation is higher when the posttest-
pretest data correlation is lower.
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Figure 2. Plots of the D (posttest�pretest¼ D) against the observed baseline data (ie, pretest data) for various levels of posttest-pretest
data correlation under unequal variances. A, 0.10 correlation. B, 0.25 correlation. C, 0.50 correlation. D, 0.75 correlation. E, 0.90 correlation.
The linear regression line and equation are plotted to depict that the slope of the correlation is generally higher when the posttest-pretest
data correlation is lower, although both D and E approximate a slope of zero.
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Figure 3. Simulated minimal clinically important differences (MCIDs) are demonstrated with increasing levels of correlation under the
scenario of equal variances. A, 0.10 correlation. B, 0.25 correlation. C, 0.50 correlation. D, 0.75 correlation. E, 0.90 correlation. Lower levels
of data correlation result in a greater rate of change in the MCID estimate as well as a wider range of MCIDs as a function of the observed
baseline data. The regression equations are for a linear regression fit to the data (MCID and observed baseline measurement) and not for
the plotted data and bootstrapped 95% CIs.
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Figure 4. Simulated minimal clinically important differences (MCIDs) are demonstrated with increasing levels of correlation under
unequal variances. A, 0.10 correlation. B, 0.25 correlation. C, 0.50 correlation. D, 0.75 correlation. E, 0.90 correlation. Lower levels of data
correlation result in a greater rate of change in the MCID estimate as well as a wider range of MCIDs as a function of the observed baseline
data, although both D and E approximate a slope of zero. The regression equations are for a linear regression fit to the data (MCID and
observed baseline measurement) and not the plotted data and bootstrapped 95% CIs.
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By contrast, not accounting for RTM via a baseline
covariate results in an MCID that is static at 20 points.

For the 5 datasets with unequal variances, the baseline
observed IKDC score had an effect (P , .001); however,
the regression coefficients for the baseline IKDC scores
were not as profound as those observed in the equal-
variances datasets. The magnitude of the baseline IKDC
effects was still highest when the post-pre correlations were
low but was close to zero when the correlations were high
(Figure 4). For every 10-point increase in the baseline
IKDC score, the MCID decreased by 2.8, 2.4, 1.3, and 0.4
when the posttest-pretest correlations were 0.10, 0.25, 0.50,
and 0.75, respectively, and increased by 0.4 when the post-
pre correlation was 0.90. As prescribed in the simulation,
the static standard MCID calculation always approximates
20 points, but the RTM-controlled MCID can vary from
approximately 15 to 23 points, depending on the properties
of the underlying data.

DISCUSSION

The results of this study demonstrated that existing
anchored MCID and SCB values, both of which are often
derived from ROC curve analyses, can be biased by RTM.
Indeed, any method using repeated observations, even as D
scores, can be biased by RTM if the correlation between
repeated observations is low and the baseline value is not
statistically controlled.

The MCID and SCB are commonly based on a single
study, using a researcher-chosen anchor, of a subsample of
a population; therefore, the MCID and SCB values derived
from a single study should be expected to have some level
of subjectivity and error variance around the reported
estimates. Our results and the impetus behind this broader
effort are not to argue against the use of the MCID and
SCB. Rather, we suggest that authors reporting on MCID
and SCB should not report these metrics as a singular value.
Based on our findings, we propose that future researchers
using and reporting anchored MCID and SCB metrics
should consider several guidelines:

(1) Always report the corresponding CI around the MCID
or SCB estimate. The interpretative difference between
an MCID of 20 and an MCID of 20 with CIs ranging
from 10 to 65 is enormous. The former suggests an
absolute level of clinical difference, whereas the latter
shows that the derived MCID is inconclusive at best.

(2) Be transparent about the anchors used, especially if the
research dichotomized a continuous or ordinal variable.

(3) Report the correlation coefficient between the posttest
and pretest data and the variance of the data at each
time point to give informed readers a basic understand-
ing of whether RTM potentially biases the reported
MCID or SCB metric.

(4) Consider using a baseline covariate-controlled ROC
curve analysis to calculate the MCID or SCB metric
and report this metric with the associated CI.

In our view, the fourth recommendation in particular
presents the best picture of what an MCID or SCB value
should be for an individual. However, in this conceptual-
ization, the MCID or SCB is not a singular value but rather
a function of the baseline. For example, if Figure 3A were a
real analysis, one could refer to a figure to say that the

patient who came in with a baseline IKDC of 45 had an
MCID of 20, whereas the patient who had a baseline IKDC
of 50 had an MCID of 18. The same information could be
automatically extracted from an arithmetic equation using
an online calculator or application. For example, the MCID
calculation for Figure 3A is

MCID ¼ 35:8� 0:35 � Baseline

It would be easy to automate these calculations in an
electronic health record format or web application. A
secondary option would be to simply say that the MCID for
IKDC is a range from roughly 13 to 24 points. As with
many aspects of analytics, there is a trade-off between
complexity and accuracy.

These conclusions should be interpreted not as an effort
to dictate to researchers or clinicians how they should
derive or use MCID and SCB metrics but rather as a
demonstration that existing conceptualizations are poten-
tially biased and do not reflect the real-world variability
inherent in any analysis. The simulations provided here are
useful reminders that fundamental statistical concepts, such
as RTM, need to be considered across a wide array of
analyses, including MCID and SCB calculations. These
proposed guidelines for conceptualizing MCID and SCB
calculations should aid clinicians and researchers in
recognizing the limitations of current metrics and contem-
plating future efforts to refine the analysis of clinical
information.
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