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Context: Multiple clinical evaluation tools exist for adoles-
cent concussion with various degrees of correlation, presenting
challenges for clinicians in identifying which elements of these
tools provide the greatest diagnostic utility.

Objective: To determine the combination of elements from
4 commonly used clinical concussion batteries that maximize
discrimination of adolescents with concussion from those with-
out concussion.

Design: Cross-sectional study.
Setting: Suburban school and concussion program of a ter-

tiary care academic center.
Patients or Other Participants: A total of 231 participants

with concussion (from a suburban school and a concussion
program) and 166 participants without concussion (from a sub-
urban school) between the ages of 13 and 19 years.

Main Outcome Measure(s): Individual elements of the
visio-vestibular examination (VVE), Sport Concussion Assess-
ment Tool, fifth edition (SCAT5; including the modified Balance
Error Scoring System), King-Devick test (K-D), and Postcon-
cussion Symptom Inventory (PCSI) were evaluated. The 24
subcomponents of these tests were grouped into interpretable
factors using sparse principal component analysis. The 13
resultant factors were combined with demographic and clinical
covariates into a logistic regression model and ranked by fre-
quency of inclusion into the ideal model, and the predictive

performance of the ideal model was compared with each of the
clinical batteries using the area under the receiver operating
characteristic curve (AUC).

Results: A cluster of 4 factors (factor 1 [VVE saccades and
vestibulo-ocular reflex], factor 2 [modified Balance Error Scor-
ing System double-legged stance], factor 3 [SCAT5/PCSI
symptom scores], and factor 4 [K-D completion time])
emerged. A model fit with the top factors performed as well
as each battery in predicting concussion status (AUC ¼
0.816 [95% CI ¼ 0.731, 0.889]) compared with the SCAT5
(AUC ¼ 0.784 [95% CI ¼ 0.692, 0.866]), PCSI (AUC ¼ 0.776
[95% CI ¼ 0.674, 0.863]), VVE (AUC ¼ 0.711 [95% CI ¼
0.602, 0.814]), and K-D (AUC ¼ 0.708 [95% CI ¼ 0.590,
0.819]).

Conclusions: A multifaceted assessment for adolescents
with concussion, comprising symptoms, attention, balance, and
the visio-vestibular system, is critical. Current diagnostic batteries
likely measure overlapping domains, and the sparse principal
component analysis demonstrated strategies for streamlining
comprehensive concussion assessment across a variety of
settings.

Key Words: visio-vestibular examination, Sport Concus-
sion Assessment Tool, King-Devick test, Postconcussion
Symptom Inventory

Key Points

• A multifaceted concussion assessment for injured adolescents is key, including assessment of symptoms, attention,
balance, and the visio-vestibular system.

• A model including key components of 4 common concussion batteries performed as well as any individual battery in
distinguishing adolescents with concussion from those without concussion.

• Current concussion diagnostic batteries likely measure overlapping concepts. The analytical approach identified
strategies for streamlining concussion assessment across a variety of settings.
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Concussion is a common injury in adolescents that
has heterogeneous presentations and signs and
symptoms, spanning the somatic, visio-vestibular,

cognitive, emotional, and sleep domains,1 ultimately mani-
festing as multiple phenotypes.2 Although advances have
been made in our understanding of the physiological
changes that occur after injury,3,4 the mainstay of diagnosis
according to both expert statements and consensus guide-
lines remains symptom based,1,5,6 with symptoms often
assessed via standardized scales such as the Postconcussion
Symptom Inventory (PCSI).7 To address the multiple phe-
notypes of concussion and augment symptom evaluation, a
multifaceted approach to concussion diagnosis using multi-
ple physiological tools beyond symptom assessment is rec-
ommended.1,5,6 These tools include the Sport Concussion
Assessment Tool, fifth edition (SCAT5),8 with measures of
attention, memory, and balance; tests of visual and cogni-
tive function, such as the King-Devick (K-D) test9; and
assessment of visio-vestibular functioning, including the
visio-vestibular examination (VVE)10 or the Vestibular/
Oculomotor Motor Screening (VOMS) examination.11 Indi-
vidually, these clinical batteries have demonstrated variable
diagnostic performance for adolescent concussion.9,11 Eval-
uations of these batteries in adolescents without concussion
have also shown varying proportions with deficits when not
injured, indicating that multidimensional testing should be
used to identify true injury.12,13

Researchers have demonstrated that these batteries and
their subcomponents have different levels of correlation
and overlap,12,14 and performing all 4 of the above batteries
(PCSI, SCAT5, K-D, and VVE) for a single patient could
take a provider up to 30 minutes to complete. Given the
time constraints to concussion assessment, knowing which
elements of each clinical battery provide the greatest diag-
nostic utility would be useful for clinicians attempting to
diagnose a concussion, allowing them to streamline their
assessment by reducing the number of elements performed.
Therefore, the ideal combination of clinical testing elements
for concussion diagnosis needs to be identified. Previous
investigators have compared the performance of the individ-
ual elements of these batteries in college-aged athletes, lead-
ing to an algorithm for using the individual components of
the SCAT to diagnose concussion,15 with vestibular testing
augmenting symptom scores in distinguishing young adults
with concussion from those without concussion.16 However,
the optimal testing battery for adolescents, who have the
highest concussion risk, is unknown.17

The purpose of our study was to use sparse principal
component analysis with regression modeling to determine
the combination of elements from 4 commonly used clini-
cal concussion batteries (VVE, SCAT5, K-D, and PCSI)
that maximize discrimination of adolescents with and those
without concussion, thereby reducing the overall number of
components required to evaluate adolescents with concus-
sion. A secondary purpose was comparing the discrimina-
tory ability of each of the 4 batteries with the ideal
combined model.

METHODS

Participants

We recruited participants aged 13 to 19 years between
August 2017 and October 2020 as part of a large,

prospective observational cohort study assessing device-
and nondevice-based diagnostic measures of concussion.13

Our age cutoffs were chosen to limit our sample to the ado-
lescent age period given age-related differences in some of
the batteries when used to assess younger children.18,19 Par-
ticipants without concussion who completed testing as part
of either pre- or postseason testing for a scholastic sport
season (including basketball, field hockey, lacrosse, and
soccer) were recruited from a local suburban school.20,21

We included all assessments for a given participant in the
sample, as an individual without concussion could engage
in these assessments across multiple sports, multiple years,
or both. We also recruited participants with concussion
from the same suburban school and from the sports medi-
cine concussion program of a tertiary care academic medi-
cal center. The suburban school and the concussion
program included adolescents from the same geographic
area with similar sociodemographic characteristics as dem-
onstrated by the demographic similarities of our cohorts
with and those without concussion (Table 1). All partici-
pants with concussion received their diagnosis in accor-
dance with the 5th International Consensus Statement on
Concussion in Sport1 from a sports medicine physician and
sustained their injuries via sport- or recreation-related
mechanisms. Participants recruited for the cohort without
concussion who subsequently sustained a concussion were
only studied as part of the cohort with concussion. The
inclusion criterion for participants with concussion was
completing the first set of clinical assessments within
28 days of injury. Subsequent evaluations for participants
with concussion occurred at the clinical discretion of the
treating team per standard clinical care, and we analyzed
all follow-up assessments. Exclusion criteria for partici-
pants with and those without concussion were active recov-
ery from a previous concussion (�30 days of physician
clearance from the previous injury) and any lower extrem-
ity trauma that would affect gait assessment, balance
assessment, or both. Trained research staff conducted all
assessments in either the sports medicine clinical setting or
the athletic training facility of the suburban high school.
Before enrollment, participants and guardians provided
written informed assent and consent as appropriate. The
study was approved by the Institutional Review Board of
Children’s Hospital of Philadelphia.

Clinical Assessments and Batteries

Demographic and Clinical Covariates. We obtained
age, sex, race and ethnicity, and concussion history from
electronic health records for the cohort with concussion
and from self-report for the cohort without concussion. We
abstracted the time from injury to assessment for partici-
pants with concussion from electronic health records.
The VVE. The VVE consists of 9 examination elements

that evaluate vision and vestibular function.13,22 Adapted
from the VOMS assessment,11 key differences are a larger
number of repetitions for saccadic eye movement and ves-
tibular ocular reflex (VOR) testing, which enhances sensi-
tivity,20 the inclusion of abnormal signs in addition to
symptom provocation for smooth pursuit testing,13 and the
addition of monocular accommodation and complex tan-
dem gait.21 The examination has been shown to be reliable
across multiple clinical settings in which adolescents with
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potential concussion receive care.22 Elements of the VVE
are (1) smooth pursuit, testing the ability of participants to
track in a single (horizontal) plane for 5 repetitions, with an
abnormality defined as either symptom provocation (head-
ache, nausea, dizziness, eye fatigue, and eye pain) or abnor-
mal signs (jerky eye movements, jumpy eye movements,
and.1 beat of nystagmus)13; (2) horizontal and (3) vertical
saccades, measuring symptom provocation (headache, nau-
sea, dizziness, eye fatigue, and eye pain), with 20 repeti-
tions of the eyes moving rapidly between fixed objects20;
(4) horizontal and (5) vertical VOR, or gaze stability,
assessing symptom provocation with 20 repetitions during
which the participants’ eyes are fixed and their heads move
in either the horizontal or vertical plane20; (6) near point of
convergence (NPC), evaluating break (double vision) using
a standard Astron accommodation rule (Gulden Ophthal-
mics) with a single-column 20/30 card and abnormal
defined as a break occurring at .6 cm23; (7) right and (8)
left monocular accommodation, testing clear-to-blur dis-
tance with 1 eye open using an Astron accommodative
rule, with abnormal distance defined by age based on the
formula of Hofstetter24,25; and (9) complex tandem gait,
observing participants for 5 steps forward and backward
with their eyes open and then closed and recording sway or
steps off a straight line, with abnormal defined as a com-
posite of at least 5 (steps off the line or sway) out of 24 (a
scale of 0 to 6 for each of the 4 conditions).21

The SCAT5. The SCAT5 is a concussion assessment
battery developed by the Concussion in Sport Group that
assesses symptom burden, attention, memory, and concen-
tration.8 The SCAT5 consists of the following variables: (1)
symptom and (2) symptom severity score, assessing 22
concussion symptoms on a 7-point Likert scale (0 ¼ none
and 6 ¼ severe) for a possible symptom score of 0 to 22
and a possible severity score of 0 to 132; (3) orientation
(naming the date, day of the week, month, year, and time);
(4) immediate word memory (3 trials of a list of 5 words);

(5) delayed word memory (repeated list of 5 words after 5
minutes have elapsed); (6) concentration (list of digits
backward and months of year backward); and the modified
Balance Error Scoring System (mBESS) in (7) double-
legged stance, (8) single-legged stance, and (9) tandem
stance, with all conditions performed on a firm surface.
The K-D Test. The K-D test evaluates a combination of

eye tracking, attention, and language by having the partici-
pant read a series of numbers from left to right across 3 test
cards with increasingly difficult orientations.9 We measured
total K-D completion time.
The PCSI. We administered the PCSI adolescent self-

report, which contains 21 concussion symptoms rated on a
7-point Likert scale (0 ¼ none and 6 ¼ severe), to all par-
ticipants.7 The test generates 4 categories of symptoms
(physical, fatigue, emotional, and cognitive). We further
categorized the physical symptom category into somatic
symptoms (headache, nausea, light sensitivity, and noise
sensitivity) and vestibular symptoms (visual problems, bal-
ance problems, dizziness, and clumsiness).13

Modeling and Statistical Analyses

We summarized participant characteristics using stan-
dard descriptive statistics. The individual subcomponents
of each battery used for modeling (model variables) are
listed in Table 2. We first determined the degree of incom-
plete data (Figure 1). Observations with values at only 1
clinical assessment and observations missing all subcompo-
nents of the VVE and SCAT5 were subsequently excluded
from the analysis. We considered whether the incomplete
data satisfied a missing-at-random assumption and handled
the missing values using multivariate imputation by chained
equations.26,27 We imputed each variable with missing values
via a separate regression model that used all other variables in
the data set (the individual battery subcomponents and the
demographic and clinical covariates). Continuous and integer-

Table 1. Participant Characteristics

Concussion

Characteristic Yes (n ¼ 231) No (n ¼ 166)

No. (%)a

Sex

Female 123 (53.2) 95 (57.2)

Male 108 (46.8) 71 (42.8)

Race and ethnicity

Hispanic 6 (2.6) 6 (3.6)

Non-Hispanic Black 20 (8.7) 18 (10.8)

Non-Hispanic White 183 (79.2) 128 (77.1)

Otherb 22 (9.5) 14 (8.4)

Previous concussion 105 (45.5) 48 (28.9)

Median (Interquartile Range)

Age, y 15.6 (14.6-16.7) 15.6 (14.6-16.8)

No. of previous concussions 0 (0-1.5) 0 (0-1)

Time from injury to first visit, d 10.0 (5.0-18.0) NA

Time from injury to last visit, d 33.0 (21.5-69.5) NA

Postconcussion Symptom Inventory at initial assessment 28.0 (12.5-53.0) 5.0 (1.0-9.0)

Time spent in exercise, h/wk 3 (2-3) 2 (2-3)

Abbreviation: NA, not applicable.
a Percentages were rounded, so sums may not be 100%.
b Other includes American Indian or Alaska Native, Asian, mixed, other, unknown, and not reported.

964 Volume 58 � Number 11/12 � November/December 2023

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-18 via free access



valued variables were imputed using linear regression models;
we applied predictive mean matching rather than direct
prediction to accommodate skewed and other nonnormal
distributions.28 Binary variables were imputed using direct

prediction from logistic regression models. We then cre-
ated 10 imputed data sets and conducted the factor analy-
sis procedure (described in the next paragraph) separately
for each set. We combined the results across the multiple
imputed data sets; further discussion of imputation is pro-
vided in the Appendix. In addition, we performed a sensi-
tivity analysis to establish the influence of the imputation
procedure. All analyses were carried out via R Statistical
Software (version 4.2.1; The R Foundation for Statistical
Computing).
To account for correlations between the 24 subcompo-

nents, we grouped them into interpretable factors using
sparse principal component analysis.29,30 The number of
factors and level of sparsity were chosen to minimize over-
lap and maximize interpretability. The resulting 13 factors
were linear combinations of the original 24 variables in
which the coefficients of the linear combinations were
termed loadings. The contributing variables and loadings
of each factor are shown in Figure 2. We then adapted a
logistic regression model that used the 13 factors plus 4
demographic and clinical covariates (age, sex, presence or
absence of a concussion history, and number of previous
concussions) to predict concussion status, accounting for
the variability in time from presentation to first visit among
our participants with concussion. To this end, we fixed a
point in time, t, and weighted the log likelihood such that
cases with observations closest to t were upweighted rela-
tive to other cases. Given that t was not applicable to partic-
ipants without concussion, all control individuals were
weighted equally in the likelihood. The estimated coeffi-
cients are then more representative of a comparison of

Table 2. The 24 Subcomponents of the 4 Clinical Assessments

Clinical Assessment Subcomponent

Visio-vestibular examination Smooth pursuit

Horizontal saccades

Vertical saccades

Horizontal gaze stability

Vertical gaze stability

Near point of convergence

Right monocular accommodation

Left monocular accommodation

Complex tandem gait

Postconcussion Symptom

Inventory

Somatic score

Vestibular score

Fatigue score

Emotional score

Cognitive score

Sport Concussion Assessment

Tool-5

Total symptom score

Symptom severity score

Orientation

Immediate memory

Delayed recall

Concentration

mBESS double-legged stance

mBESS single-legged stance

mBESS tandem stance

King-Devick test Total completion time

Abbreviation: mBESS, modified Balance Error Scoring System.
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Figure 1. Overview of the analysis. In step 1 (data cleaning), participants with observed values at only 1 assessment and participants
missing all subcomponents of the VVE and Sport Concussion Assessment Tool, fifth edition (SCAT-5), were excluded. In step 2 (imputa-
tion), the remaining missing values were imputed using multivariate imputation by chained equations. In step 3 (creation of factors), sparse
principal component analysis was used to create interpretable factors from the 24 subcomponents of the 4 clinical assessments. In step 4
(regression), a forward-selection procedure was implemented to determine the factors that maximized discrimination of participants with
from those without concussion. Abbreviations: K-D, King-Devick test; PCSI, Postconcussion Symptom Inventory; VVE, visio-vestibu-
lar examination.
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participants with concussion observed close to time t and
those without concussion. We repeated this estimation for a
range of values of t, specifically for every observed value
of time since injury in the data set, yielding a separate set
of estimated coefficients for each value of t, which was
used to calculate a sequence of predicted probabilities of
concussion across the range of t values. Treating the
sequence of predicted probabilities as a function, we
integrated over the range of values of t and used the inte-
grated values to construct a receiver operating character-
istic (ROC) curve and calculate the area under the ROC
curve (AUC). The Appendix provides a further discus-
sion of our modeling procedure.
To determine which factors were most highly predictive

of concussion status, we implemented a forward-selection
procedure whereby the regression models were estimated
on a training data set, and AUCs calculated on a validation
data set were used as the criteria. To increase the robustness
of the feature selection procedure, we performed random
subsampling cross-validation 100 times and ranked the 13
factors by the number of times they were included in the
model and their average rank when selected into a model.
To identify the optimal number of features, we added the
factors 1 at a time to the weighted logistic regression model
in order of highest selection frequency, and the Akaike
information criterion and Bayesian information criterion
were calculated at each step. The model with the lowest
Akaike information criterion and Bayesian information

criterion was considered the optimal model,31 and the fac-
tors included in that model were classified as top factors.
Given that the evaluation of significant factors was based
on selection frequencies and ranks, not regression coeffi-
cients and standard errors, repeated measures among par-
ticipants were treated as independent observations.32

Although this can introduce bias into the estimates of
regression coefficient variances, it did not hinder our
analysis because we were not relying on standard errors
for inference. Therefore, we included all observations
for each study participant in our analysis. This procedure
was repeated on each of the 10 imputed data sets, and
selection frequency and rank were averaged across all
models. The number of times each factor was selected as
a top feature out of the 10 runs was used to detect the
overall top factors.
The predictive performance of these top factors was

then compared with the individual clinical batteries. For
each of the 4 clinical batteries (VVE, SCAT5, K-D, and
PCSI), a separate weighted logistic regression model was
fit and contained all subcomponents of the assessment,
and a fifth model was fit with the top factors as determined
by the forward-selection procedure across the 10 imputed
data sets. All 5 models included the 4 demographic and
clinical covariates of age, sex, presence or absence of a
concussion history, and number of previous concussions
and were estimated on a training data set. The AUC for
each model was calculated on a testing set in the same

Concentration Immediate Memory K-D Completion Time Smooth Pursuits Orientation

Delayed Recall mBESS Single-
Legged Stance

mBESS Tandem Stance Tandem GaitmBESS Double-
Legged Stance

Saccades + VORSCAT-5/PCSI SymptomsNPC + Accommodation

• SCAT-5 concentration total 
score (1)

• SCAT-5 immediate memory 
score (1)

• K-D total completion time (1) • VVE smooth pursuits (−1) • SCAT-5 orientation (1)

• SCAT-5 delayed recall (−1) • SCAT-5 single-legged stance 
balance errors (−1)

• SCAT-5 double-legged stance 
balance errors (−1)

• SCAT-5 tandem stance balance 
errors (1)

• VVE tandem gait (−1)

• VVE convergence break (0.53)
• VVE right monocular              

accommodation (0.60)
• VVE left monocular                

accommodation (0.60)

• SCAT-5 symptom score (−0.35)
• SCAT-5 symptom severity 

(−0.46)
• PCSI somatic score (−0.33)
• PCSI vestibular score (−0.35)
• PCSI fatigue score (−0.38)
• PCSI emotional score (−0.35)
• PCSI cognitive score (−0.41)

• VVE horizontal saccades (0.49)
• VVE vertical saccades (0.54)
• VVE horizontal VOR (0.47)
• VVE vertical VOR (0.50)

Figure 2. Factors created by the sparse principal component analysis. Thirteen factors were created from the 24 subcomponents of the
clinical assessments listed in Table 2. The loading for each variable is reported in parentheses. Abbreviations: K-D, King-Devick test;
mBESS, modified Balance Error Scoring System; NPC, near point of convergence; PCSI, Postconcussion Symptom Inventory; SCAT-5,
Sport Concussion Assessment Tool, fifth edition; VOR, vestibulo-ocular reflex; VVE, visio-vestibular examination.
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manner as described earlier, and 95% CIs for the AUC
were calculated based on 1000 hierarchical bootstrap sam-
ples of the data.

RESULTS

The study cohort consisted of 231 participants with con-
cussion, who provided 619 observations, and 166 partici-
pants without concussion, who provided 406 observations.
The median number of observations per participant was 2
(interquartile range ¼ 2–3, range ¼ 1–10) for the group
with concussion and 2 (interquartile range ¼ 1–3, range ¼
1–10) for the group without concussion. A summary of the
participant characteristics appears in Table 1. The distribu-
tion of characteristics was similar between individuals with
and those without concussion. Of 1236 original observa-
tions, we excluded 136 due to incomplete data and 75 for
not satisfying the inclusion criteria. Of those 211 excluded
observations, 126 were from participants whose complete
observations at other visits were included. Of the remaining
1025 observations across 32 features (32 800 total potential
individual values) used in the analysis, 10.9% (n ¼ 3587
individual values) of assessments were missing and were
handled by multivariate imputation via chained equations.
Results of the sensitivity analysis on the influence of the
imputation procedure are reported in the Appendix.

The results of the forward selection procedure averaged
over the 10 imputed data sets are presented in Figure 3.
The spread in Figure 3A shows a cluster of 4 factors with a
high average rank and a large number of times selected;
these are factor 1 (saccades þ VOR), factor 2 (mBESS
double-legged stance), factor 3 (SCAT5/PCSI symptoms),
and factor 4 (K-D completion time). We also identified a
second cluster of the remaining factors with a low average
rank and a small number of times selected. The separation
between these groups is reiterated in Figure 3B, which indi-
cates the number of times out of the 10 imputed data sets
that each factor was selected as a top feature. Factor 3
(SCAT5/PCSI symptom score) was selected in 75.29%
(n ¼ 752) of the models with an average rank of 1.4 and
was selected as a top feature in all 10 imputed data sets.
Factor 4 (K-D completion time) was selected in 65.5% (n ¼
655) of the models with an average rank of 2.4 and was
selected as a top feature in all 10 imputed data sets. Factor 2
(mBESS double-legged stance) was selected in 76.9% (n ¼
769) of the models with an average rank of 3.2 and was
selected as a top feature in all 10 imputed data sets. Finally,
factor 1 (VVE saccades þ VOR) was selected in 74.2% (n ¼
742) of the models with an average rank of 3.0 and was
selected as a top feature in all 10 imputed data sets.
Among the 9 remaining factors, 6 were never selected as

a top feature: factors 8 (VVE complex tandem gait), 9
(VVE NPC þ accommodation), 10 (mBESS single-legged

K-D completion time

mBESS double-legged stance
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Immediate 
memory
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Figure 3. Results of the forward-selection procedure. A, Scatterplot of the average number of times a factor was selected into the
model out of 100 (y axis) versus the average rank in selection order when present in a model (x axis). Values were averaged across
results from 10 imputed data sets. The top 4 factors are circled in red. B, Bar plot of the number of times each factor was selected as a
top feature out of 10 imputations. Factors not listed were never selected as top features. The top 4 factors are outlined in red. Abbrevia-
tions: K-D, King-Devick test; mBESS, modified Balance Error Scoring System; NPC, near point of convergence; PCSI, Postconcussion
Symptom Inventory; SCAT-5, Sport Concussion Assessment Tool, fifth edition; VOR, vestibulo-ocular reflex; VVE, visio-ves-
tibular examination.
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stance), 11 (SCAT5 delayed recall), 12 (SCAT5 concentra-
tion), and 13 (SCAT5 orientation). The remaining 3 factors
were selected in either 1 or 2 of the imputed data sets.
A comparison of the model fit with the top 4 factors (fac-

tors 1 to 4) and models fit with all subcomponents from
each battery is supplied in Figure 4. The model with the top
4 factors performed as well as any individual battery in pre-
dicting concussion status (AUC ¼ 0.816 [95% CI ¼ 0.731,
0.889]) compared with the individual subcomponents of
the SCAT5 (AUC ¼ 0.784 [95% CI ¼ 0.692, 0.866]), PCSI
(AUC ¼ 0.776 [95% CI ¼ 0.674, 0.863]), VVE (AUC ¼
0.711 [95% CI ¼ 0.602, 0.814]), and K-D (AUC ¼ 0.708
[95% CI ¼ 0.590, 0.819]). Individual ROC curves for each
of the models are provided in Appendix Figure 3.

DISCUSSION

We identified the combination of subcomponents from 4
commonly used clinical concussion assessments that maxi-
mized the discrimination of adolescents with concussion
(evaluated approximately 10 days from injury in a concus-
sion specialty clinic) from adolescents without concussion.
Overall, a combination of 4 factors contributed the most
information to identifying concussion status: saccades and
VOR from the VVE, symptom scores from the SCAT5/
PCSI, mBESS double-legged stance, and K-D test comple-
tion time. Conversely, the factors that contributed the least
to identifying concussion status were the VVE complex
tandem gait; NPC; monocular accommodation; mBESS
single-legged stance; and SCAT5 delayed recall, concentra-
tion, and orientation. These results offer a streamlined
framework for those using these multiple testing batteries
to potentially reduce the number of elements needed to dis-
criminate adolescents with concussion from those without
concussion.

Traditionally, symptoms have been the mainstay of con-
cussion diagnosis recommendations.5,6 However, given the
nonspecific and subjective nature of symptoms, as well as
physiological disturbances in cognition, vision, and vestib-
ular function identified after injury, recommendations have
been made to augment the symptom evaluation with clini-
cal testing batteries.1 In 2 large studies of collegiate athletes
from the Concussion Assessment, Research and Education
Consortium, researchers evaluated augmenting symptom-
based assessment with testing from other standardized clin-
ical batteries. Among this population of collegiate athletes,
Broglio et al15 used a classification and regression tree anal-
ysis and found that sequentially adding mBESS testing to
symptom scores provided the highest diagnostic accuracy.
These results, augmenting symptom scales with balance
testing from the mBESS, partially mirror ours, as 2 of our 4
highest-performing factors were the mBESS double-legged
stance (factor 2) and a combination of the SCAT5 and
PCSI symptoms (factor 3). Although both the SCAT5 and
PCSI symptom scales were included in our model for ana-
lytic purposes, because of their redundancy, 1 should suf-
fice for practical purposes in translating these findings into
practice. Based on the recommendation to limit the use of
the SCAT5 to a more acute timeframe,33 the PCSI would
appear to be the optimal choice for a symptom scale in the
subacute timeframe. In our study, the addition of subcom-
ponents from other batteries testing eye tracking, attention,
and the visio-vestibular system further contributed unique
elements to the concussion diagnosis, as demonstrated by
the strong performance of VVE saccadic and VOR testing
(factor 1) and K-D total completion time (factor 4). In a
separate investigation of the Concussion Assessment,
Research and Education Consortium collegiate athlete pop-
ulation, Ferris et al16 found increased diagnostic sensitivity
by adding the complete VOMS to the complete SCAT, third
edition, although the authors evaluated the batteries as
complete tests rather than the subcomponent analysis we
used. Of particular interest is the inclusion of saccadic eye
movement and VOR testing from the VVE in the high-
performing factors in our analysis. One of the key differ-
ences between the VVE and the VOMS is the use of 20
versus 10 repetitions to assess symptom provocation on
saccadic eye movement and VOR testing; this difference
has been shown to enhance diagnostic sensitivity (without
sacrificing specificity).20 The results of our factor analysis
further emphasize the value of this evaluation.
The rankings in Figure 3B indicate the relative impor-

tance of the factors in the joint model. The number of times
a factor was selected as a top feature does not necessarily
translate to its individual influence (in isolation from the
other factors). A factor, such as the factor 12, which
included SCAT5 concentration, that is ranked lower than
others in Figure 3B may still individually distinguish par-
ticipants with from those without concussion effectively
but when considered in a joint model with the other assess-
ment measures, it may not contribute much unique infor-
mation when combined with the other top factors. Given
that factors with redundant information are unlikely to be
selected together in a single model by the forward-selection
procedure, factors that are individually influential in deter-
mining concussion status can have low rankings in the joint
model. Ultimately, the results in Figure 3 suggest that the
top 4 factors, when combined, may provide the most

Model

A
U

C
0.9

0.8

0.7

0.6

0.5

Factors SCAT-5 PCSI VVE K-D

Figure 4. Area under the receiver operating characteristic curve
(AUC) of model fit with the top 4 factors from the sparse principal
component analysis and logistic regression procedure and mod-
els including the subcomponents of each clinical assessment.
Each of the 5 models includes the demographic and clinical covar-
iates listed in Table 1. Factors refers to the combination of factor 1
(saccades and vestibulo-ocular reflex from the visio-vestibular
examination [VVE]), factor 2 (modified Balance Error Scoring Sys-
tem double-legged stance), factor 3 (Sport Concussion Assess-
ment Tool, fifth edition [SCAT-5], and Postconcussion Symptom
Inventory [PCSI] symptoms), and factor 4 (King-Devick [K-D] test
completion time). Error bars represent 95% CIs for the AUC calcu-
lated from 1000 hierarchical bootstrap samples.
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discriminatory information related to a concussion diagno-
sis, whereas the remaining factors may contain information
already captured by the top factors. The redundancy in
these measures is particularly salient given the time con-
straints of treating clinicians. Various degrees of redun-
dancy between these batteries have been demonstrated in
other populations; for example, in a population of colle-
giate athletes, Clugston et al14 noted a correlation between
results on the SCAT, third edition, concentration score and
the K-D test. In our assessment, the factor that included
the SCAT5 concentration score (factor 12) was used less
often than factor 4, which included the K-D composite
time (factor 4), also suggesting overlap between the tests,
as the K-D tests concentration in addition to attention and
eye-tracking ability.9

As shown in Figure 4, a diagnostic test including only
the subcomponents in the top 4 factors in this analysis per-
formed as well as any of the 4 complete batteries alone
(with a higher individual AUC and the tightest CIs, but
given overlapping CIs, we cannot rule out similar perfor-
mance across the other batteries). Because of the possibility
of redundant information in the assessment measures, limit-
ing patient assessment to only the features contained in the
top 4 factors could reduce both time and cost for clinicians.
However, in doing so, clinicians must keep in mind the het-
erogeneous nature of concussion as well as the utility of
these tests for information beyond concussion diagnosis.
For example, although deficits elicited by complex tandem
gait in this population did not uniquely identify patients
with concussion substantially beyond our 4 highest-
performing factors, a subset of adolescents with concussion
may present primarily with gait disturbances that our
highest-performing factors would not capture. Although
the mBESS is included in the top 4 factors in our analysis,
Corwin et al21 found enhanced diagnostic sensitivity of
complex tandem gait when directly compared with the
mBESS, likely due to the complexity involved in complet-
ing a tandem walk backward with one’s eyes closed. A phe-
notype of concussion may exist in which the mBESS and
complex tandem gait provide unique information.
Beyond heterogeneous diagnostic considerations, these

batteries can be used for both prognosis and tailoring antic-
ipatory guidance. For example, each element of the VVE
has displayed a strong correlation with prolonged concus-
sion symptoms, particularly monocular accommodation,
which would be eliminated in an assessment paradigm
guided by our factor analysis.34,35 Eliminating some of
these elements might not sacrifice substantial diagnostic
power; however, decreasing their use may produce less
effective prognostication, a characteristic of the assessment
that we did not evaluate. Finally, given the eye-tracking
demands in the school setting, multiple elements of visio-
vestibular testing can also serve as a functional guide for
school reentry, enabling clinicians to tailor accommoda-
tions to individuals’ needs that would be lost with elimina-
tion of our 9 lower-performing factors.36 Future researchers
should evaluate the ability of our factors to provide prog-
nostic, in addition to diagnostic, information.
Our study had several limitations. Given that the adoles-

cents with concussion were primarily enrolled from a refer-
ral sports medicine concussion program, the median
number of days from injury to first visit for our participants
was 10; therefore, our findings may not be generalizable to

the hyperacutely injured adolescent seen in an emer-
gency or urgent care setting or shortly after injury on the
sideline, and we caution providers in immediately using
these findings in this scenario. Although heterogeneous
times existed from injury to initial presentation, our
modeling accounted for the time-varying nature of pre-
sentation. Next, this population comprised participants
with sport- and recreation-related concussions; previous
investigators have observed unique recovery trajectories
for nonsport-related concussion (eg, due to motor vehi-
cle collisions or assault),37 suggesting perhaps that the
features most salient to diagnosis may differ due to the
mechanism of concussion. Our participants with concus-
sion largely consisted of patients who were referred, so
they may indicate a subset of more severely injured ado-
lescents for whom the diagnostic factors might differ
versus generalizing to the overall population of all-
comers with adolescent concussion. Future authors
should validate our factors across a broader population,
including those with different times from injury, as well
as various injury mechanisms. In addition, whereas the
psychometric properties of the 4 individual batteries
have been reported extensively in previous work,7–9,22

we did not assess the psychometric properties of our
ideal model in this study, and the interrater and test-
retest reliability for a streamlined, combined diagnostic
battery should be determined. Finally, as demonstrated
in Figure 1, although missingness was present in several
of our measures, we showed that our imputation mea-
sures were robust and avoided substantial bias with a
sensitivity analysis that assessed the influence of the
imputation procedure, yielding results that were highly
consistent with the original analyses (Appendix).

CONCLUSIONS

Our study highlights the importance of a multifaceted
concussion assessment for the diagnosis of an injured ado-
lescent, testing various aspects including symptoms, atten-
tion, balance, and the visio-vestibular system. Current
concussion diagnosis batteries likely measure overlapping
domains, and the sparse principal component analysis con-
ducted herein identified strategies for streamlining concus-
sion assessment for clinicians across a variety of settings
by reducing the number of elements needed for diagnosis.
Although the streamlined battery we presented, which is an
initial attempt at such a reduction, may not be ready for
immediate clinical implementation, we characterized the
redundancy among our current diagnostic tests in the bat-
tery. Conducting future studies to further assess both the
utility and psychometric properties of a streamlined battery
is an important next step.
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Appendix. Data Imputation and Modeling for the Multivariate Model

Data Imputation

Missing values in the predictors were handled using multivariate

imputation by chained equations, which assumes that the incomplete
data are missing at random. This assumption was evaluated by testing
for correlations between the propensity of each variable to be missing
and other variables in the data set, especially the demographic and

clinical covariates and time since injury. In particular, age and time
since injury were highly correlated with missingness. In addition,
multivariate imputation by chained equations was well suited for our
data because it can handle various types of variables, such as continu-

ous, binary, and integer-valued variables. Finally, the use of multiple
imputations rather than a single imputation accounted for uncertainty
in the imputed values.

In the imputation procedure, we fit a set of regression models, one
for each variable with missing values. Logistic regression models

were used for binary variables, and linear regression models were
used for continuous and integer-valued variables. In each model, the
dependent variable was regressed on all other variables in the data
(individual battery subcomponents and demographic and clinical

covariates).
Predictive mean matching was used for integer-valued variables

and continuous variables with skewed and other nonnormal distribu-
tions. Each missing entry was assigned a value that was randomly

selected from the observations and had regression-predicted values
closest to the regression-predicted value for the missing entry. Given
that the imputed values were taken from other observed values of
the variable in the data, predictive mean matching ensured that

the imputed values were plausible. This approach is more appropriate
than direct imputation with the predicted values when the variable with
missing entries does not satisfy the normality assumption. The imputa-
tion procedure was conducted 10 times to generate 10 unique imputed

data sets.
We also conducted a sensitivity analysis to assess whether the

results were robust to changes in the imputation procedure. Although
time since injury was associated with missingness in the data, it was
not included in the imputation models because it was not observed for

participants without concussion. To ensure that excluding time since
injury from the imputation models did not greatly affect the results,
we performed a secondary imputation procedure that included time
since injury and repeated the analyses presented in the main paper.

Given that controls were not injured and, therefore, did not have an
observed value for time since injury, we used an inverted form of
time since injury and assigned control participants a value of zero.
Except for the inclusion of time since injury, the imputation proce-

dure followed the same steps as described above.
We analyzed the new set of imputed data using the same steps pre-

sented in the Methods, and the results were consistent with the pri-
mary analyses. The results of the forward-selection procedure are

shown in Appendix Figure 1. Appendix Figure 1A shows the same
cluster of 4 factors (Sport Concussion Assessment Tool, fifth edition

[SCAT5]/Postconcussion Symptom Inventory [PCSI] symptoms, sac-

cades þ vestibulo-ocular reflex, modified Balance Error Scoring Sys-

tem double-legged stance, and King-Devick [K-D] test completion

time) with a high average rank and a large number of times selected,

as shown in Figure 3. The remaining factors form a second cluster

with a lower average rank and smaller number of times selected.

Appendix Figure 1B reinforces the separation between the 2 groups.

The SCAT5/PCSI symptoms factor was selected in 79.3%

(n ¼ 793) of the models with an average rank of 1.4 and was selected

as a top feature in all 10 imputed data sets. The saccades þ vestibulo-

ocular reflex factor was selected in 75.4% (n ¼ 754) of the models

with an average rank of 3.1 and was selected as a top feature in all 10

imputed data sets. The modified Balance Error Scoring System

double-legged stance factor was selected in 73.1% (n ¼ 731) of the

models with an average rank of 3.4 and was selected as a top feature

in all 10 imputed data sets. The K-D test completion time factor was

selected in 65.1% (n ¼ 651) of the models with an average rank of

2.7 and was selected as a top feature in 9 of the 10 imputed data sets.

The remaining factors were selected in less than half of the imputed

data sets.

Appendix Figure 2 presents the comparison between a model fit

with the top 4 factors and models for each individual battery. All 5

models included the 4 demographic and clinical covariates of age,

sex, presence or absence of a concussion history, and number of pre-

vious concussions. The model with the top 4 factors performed best

in predicting concussion status (area under the receiver operating charac-

teristic curve [AUC]¼ 0.771 [95% CI¼ 0.667, 0.860]), followed by the

PCSI (AUC ¼ 0.748 [95% CI ¼ 0.647, 0.838]), SCAT5 (AUC ¼ 0.747

[95% CI ¼ 0.639, 0.840]), visio-vestibular examination (AUC ¼ 0.723

[95% CI ¼ 0.616, 0.818]), and K-D test (AUC ¼ 0.701 [95% CI ¼
0.576, 0.807]). The hierarchical bootstrap CIs showed considerable

overlap.

Modeling

To predict concussion status, we set up the following logistic

regression model:

logit li tð Þ
� �¼

Xp

j¼ 1

bj tð ÞXij þ
X4

k¼ 1

ak tð ÞZik;

where li tð Þ¼Pðyi ¼ 1Þ, yi is the indicator that the ith i¼ 1; . . . ; nð Þ
observation belongs to a participant with concussion (as opposed to a

participant without concussion), Xij j¼ 1; . . . ; pð Þ are the factors,

Zik k¼ 1; . . . ; 4ð Þ are the demographic and clinical covariates, and

bj tð Þ; ak tð Þ are the respective coefficients. To account for the vari-

ability in time from presentation to first visit among the participants

with concussion, we fixed a point in time, t, and fit the above model

where the log likelihood was weighted such that cases with observations

Journal of Athletic Training 971

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-18 via free access

https://doi.org/10.1097/JSM.0000000000000507
https://doi.org/10.1097/JSM.0000000000000507
https://doi.org/10.1016/j.jpeds.2015.01.039
https://doi.org/10.1016/j.jpeds.2015.01.039
https://doi.org/10.1097/PEC.0000000000002498
https://doi.org/10.1002/emp2.12056
mailto:corwind@chop.edu


closer to t were upweighted relative to other cases. This resulted in a set of

coefficients, b tð Þ; a tð Þ, which were more representative of a comparison
of participants with concussion observed close to time t and those without

concussion. We repeated this estimation of b tð Þ; a tð Þ for a range of val-
ues of t, specifically all values of time since injury observed in the data.

The likelihood is specified as follows:

b tð Þ; a tð Þ½ � ¼
Xn

i¼ 1

wi tð Þ yi log li tð Þ
� ��

þ 1� yið Þ log 1� li tð Þ
� �g;

where the weights, wi tð Þ; are

wi tð Þ¼ c tð Þ/ ti � t

r

� �
; yi ¼ 1

1; yi ¼ 0

:

8<
:

The constant c tð Þ was picked for each value of t such thatXn

i¼ 1
I yi ¼ 1f g wi tð Þ¼

Xn

i¼ 1
I yi ¼ 0f g. This ensured that the con-

tribution of participants with concussion to the likelihood relative to partici-

pants without concussion remained the same regardless of weighting. The

number of days since injury for observation i is ti. The constant r deter-

mined the range of days around t that was givenmore weight in the estima-

tion of the regression coefficients and was tuned on a validation data set.
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Appendix Figure 1. Results of the forward-selection procedure on data imputed using time since injury. A, Scatterplot of the average
number of times a factor was selected into the model out of 100 (y axis) versus the average rank in selection order when present in a
model (x axis). Values were averaged across results from 10 imputed data sets. The top 4 factors are circled in red. B, Bar plot of the
number of times each factor was selected as a top feature out of 10 imputations. Factors that are not listed were never selected as top
features. The top 4 factors are outlined in red. Abbreviations: K-D, King-Devick test; mBESS, modified Balance Error Scoring System;
NPC, near point of convergence; PCSI, Postconcussion Symptom Inventory; SCAT-5, Sport Concussion Assessment Tool, fifth edition;
VOR, vestibulo-ocular reflex.
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Appendix Figure 2. Area under the receiver operating characteris-
tic curve (AUC) of the model fit with the top 4 factors and each bat-
tery on data imputed using time since injury. Each of the 5 models
includes the demographic and clinical covariates listed in Table 2.
Factors refers to the combination of factor 1 (saccades and vesti-
bulo-ocular reflex from the visio-vestibular examination [VVE]),
factor 2 (modified Balance Error Scoring System double-legged
stance), factor 3 (Sport Concussion Assessment Tool, fifth edition
[SCAT-5] and Postconcussion Symptom Inventory [PCSI] symp-
toms), and factor 4 (King-Devick [K-D] test completion time). Error
bars represent 95% CIs for the AUC calculated from 1000 hierar-
chical bootstrap samples.
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We derived AUC values with 95% CIs based on 1000 hierarchical
bootstrap samples for models fit with all subcomponents of each clini-
cal assessment and a model fit with the top 4 factors. In Appendix
Figure 3, an example of the underlying receiver operating characteris-
tic curves for each of the 5 models is presented for 1 hierarchical
bootstrap sample.
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Appendix Figure 3. Receiver operating characteristic (ROC) curves
for each battery and for a model fit with the top 4 factors (Factors).
The ROC curves are calculated from 1 hierarchical bootstrap sample
used to calculate the area under the ROC curves and 95% CIs pre-
sented in Figure 4. Abbreviations: K-D, King-Devick test; PCSI,
Postconcussion Symptom Inventory; SCAT-5, Sport Concussion
Assessment Tool, fifth edition; VVE, visio-vestibular examination.
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