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Friction blisters are a common injury of the feet sustained by
individuals participating in sporting, recreational, and military
activities. The high incidence of friction blisters brings into
question the effectiveness of common prevention strategies.
The purpose of this article was to review current evidence
for established blister-prevention strategies and to explore
how these interventions address the factors that cause fric-
tion blisters. Preventive strategies, focusing on previously

overlooked elements of the blister-causing mechanism, are
proposed. Areas of future research that are much needed to
reduce this common skin injury in active individuals are
outlined.
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Key Points

• A friction blister is an intraepidemeral tear caused by repetitive shear deformation.
• Opportunities to prevent blisters include maximizing the intrinsic resilience of the skin to shear deformation, reducing
the number of shear deformation episodes, and reducing the magnitude of shear deformation.

T he continued high incidence of friction blisters of
the feet brings into question the effectiveness of
common prevention strategies. Effectively prevent-

ing friction blisters before participation in long-distance
walking and running has been a daunting task for partici-
pants as well as treating clinicians, perhaps in part due to a
long-held oversimplification or misunderstanding of the
pathomechanics of blister formation.
Friction blisters are not the result of materials or objects

rubbing on the skin surface. Rather, they represent an intra-
epidermal tear resulting from shear deformation beneath
the skin surface.1–5 Specifically, the underlying bones move
back and forth during ambulation, while high friction
forces acting between the skin surface and footwear inter-
faces provide traction that causes the skin surface to remain
stationary for push-off.6 The subsequent shear deformation,
when repetitive, results in mechanical fatigue within the
stratum spinosum,1,3,5–8 which later fills with plasma-like
fluid to create a blister.9,10

The 3 fundamental components of the mechanism caus-
ing friction blisters are the following: moving bone,6,8 high
friction force,2,3 and repetition of the resulting shear
events.1,3–5,11 Until now, the contribution of bone movement
to friction blisters has been largely ignored or unrecog-
nized,6 but it presents fruitful ground for new strategies in
blister prevention. The second element, friction, is widely
accepted, although often inappropriately assumed to be a
rubbing phenomenon against the skin rather than the actual
mechanism whereby the skin surface and footwear inter-
faces remain stationary and unable to move “in synch”

with the underlying bone.8 Finally, the third element, repe-
tition, can be appreciated because blisters are known to
occur primarily in endurance activities.12–23 Given that all 3
elements are required for blister formation, appropriate pre-
ventive strategies can focus on each component.
Our purpose in preparing this article was to consider the

evidence for established blister-prevention strategies and to
examine how these measures take into account the factors
that cause friction blisters. We propose preventive interven-
tions that address elements of the blister-causing mecha-
nism that have been ignored to date. We also suggest topics
for future investigation to decrease the occurrence of fric-
tion blisters in active people.

PREVENTION OF FRICTION BLISTERS

A friction blister results from mechanical fatigue within
the stratum spinosum layer of the epidermis. The pathome-
chanics of the blister event depend on the following 3 fac-
tors: (1) the number of shear cycles, (2) the intrinsic
resilience of the skin to shear deformation, and (3) the mag-
nitude of shear deformation. Each of these factors can be
targeted as part of a friction blister prevention strategy
(Figure 1).

Reduce the Number of Shear Cycles

Repetition of shear deformation within the skin is required
for blister formation.1,3–5,7,11 Comaish4 observed that the blis-
ter injury results from epidermal fatigue to repetitive shear-
ing forces, perhaps in association with increased tissue
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temperature. At the same time, the author emphasized that
friction injury did not depend on wear, enzymes, pressure,
stretching, or ischemia and that repetition of the mechanical
insult was an important cause.4 This notion is supported by
the fact that blisters are more common in activities that
involve repetition of steps, such as long-distance running,
hiking, endurance military training, and protracted tennis
matches.14,19–21,24–27

In experimental blister studies, researchers1,3,5 have used
both the frequency and duration of shear cycles as data end-
points for the formation of a blister. Indeed, an inverse rela-
tionship exists between the number of shear cycles and the
magnitude of shear required to produce intraepidermal
mechanical fatigue.6,11 Therefore, in spite of high shear
loads, the risk of blistering can be reduced by limiting the
number of shear cycles.1,3,5 Implementing a strategy to
reduce shear cycles may be feasible during training for a
specific event. However, on the actual day of the event, the
total number of shear cycles (foot strikes) will be deter-
mined by the requirements for exercise completion and, in
most cases, cannot be modified.

Increase the Intrinsic Resilience of the Skin to

Repetitive Shear Deformation

Individual variations in the time to blister are large, as
shown in experimental studies, suggesting that some people
are more susceptible than others.26 Naylor1 produced blis-
ters on the anterior shins of 19 volunteer British medical
students and physicians and found the number of shear
cycles required to cause a blister ranged from 27 to 138.
Sulzberger et al3 conducted experimental blister research
on the palms of 54 military personnel. A consistent fric-
tional force was applied repetitively, and the time to blister
was recorded. Some soldiers blistered in 3 minutes, and
others had not blistered after 50 minutes. More recently,
researchers5 applied repetitive shear load to the soft tissues
of the posterior heel of 30 volunteers and measured the
time to blister. Blister onset ranged from 4 to 32 minutes.
Although large variation exists among individuals in

their skin’s resilience or tolerance of shear stress, scientific
evidence3,28–31 supports the concept that the skin can adapt
to resist repetitive shear-deformation damage. Therefore, in
anticipation of participation in activities that impose many
shear cycles, individuals can embark on training programs
that gradually increase the shear loads on their feet.

Adaptation occurs when the skin is subjected to the very
force that threatens to damage it—repetitive shear deforma-
tion. Mackenzie28,29 examined changes to the skin of mouse
ears that were rubbed every day for 1, 7, 14, 28, or 35 days.
The frictional stimulus applied each day was 10 revolutions
of a rotating brush at a force of 8 to 9g. He found that in
the ears that were rubbed, cells in the epidermis were larger
and more resistant to mechanical damage than ears that
were not rubbed. Importantly, the changes seen at 7 days
were identical to those at 14, 28, and 35 days, indicating
that adaptations maximized by 7 days.
Researchers have looked at the skin’s response to shear and

friction on the palms32; thigh33; anterior tibial surface1,2; back,
buttocks, shins, forearms, upper arms, thighs, palms, and
soles3; palms and soles of monkeys34; mouse ears28,29; and rat
gums.35 Adaptive changes that lead to an increased resistance
to epidermal fatigue include an increased size and density of
cells at the basement membrane and a thicker stratum cor-
neum. More recently, investigators30 have demonstrated that
skin adaption occurs by forming new collagen fibrils with
larger diameters, as opposed to increasing diameters of exist-
ing fibrils. At the same time, a breakdown of existing small-
diameter fibrils occurs.31

Authors of several studies of endurance activities lasting
days to weeks, such as marching, hiking, and ultramara-
thon, found blister incidence was at its highest earlier rather
than later in the event. This finding may verify that skin
can adapt to mechanical strain. Foot-blister risk factors
were assessed in military cadets who underwent abrupt
increases in walking, running, and general physical activity
during 6 weeks of summer Army Reserve Officer Training
Corps training.24 Blisters occurred in 42.1% of cadets, with
95% of all cases occurring in the first 3 weeks (week 1 ¼
34.6%, week 2 ¼ 51.2%, week 3 ¼ 9.3%). In an examina-
tion of the blister incidence in 357 male US Marine recruits
undergoing basic training over 12 weeks,36 the highest inci-
dence was in weeks 1 through 3 compared with weeks 4
through 6, 7 through 9, and 10 through 12. Among 142
Korean college student volunteers who undertook a 21-day,
580-km road march, most blisters occurred on the second
day.14 Just over 95.1% of students developed their first foot
blister in the first 5 days, with few blisters occurring after
that time.
For preventive strategies, a role appears to exist for

familiarity with the activity and footwear that may affect
the overall blister incidence. Previous hiking or military
experience offered some protection against blister forma-
tion in 189 recruits going through basic military training.37

Blisters were most noticeable early in recruit training in 1
study,36 and troops who did not break in their boots were
more likely to sustain blisters during a 12-month deploy-
ment in Iraq according to another study.38 In research
involving 2617 cadets at Army Reserve Officer Training
Corps training, those who wore their boots .20 hours per
week in the 2 weeks immediately before training were less
likely to develop foot blisters than those who did not
(29.70% versus 44.41%; P ¼ .001).24 Gardner and Hill21

found that hikers who had not preconditioned their foot-
wear were more likely to develop blisters (32% versus
25%). Finally, in a group of 221 male lieutenants taking
part in their first training hike, the likelihood of blister for-
mation depended on the running habits of the individual.39
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Figure 1. Blister-prevention strategies mechanisms of action.
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The incidence of blisters was highest in the early stages of
training, suggesting that adaptive changes took time.
In summary, preventive strategies focusing on the skin’s

ability to undergo structural adaptive changes should be
maximized to increase its resistance to mechanical fatigue,
including gradual familiarization with the activity and ter-
rain.36,37,39 Familiarization with footwear should also be
considered.21,24,38 However, we highlight 2 cautionary
notes. First, although some level of thickened stratum cor-
neum appears advantageous, excessive hyperkeratosis is
generally accepted as counterproductive in blister preven-
tion.11,40,41 Shear deformation continues to occur in the
soft tissue under a thickened stratum corneum. Certainly,
if blisters occur in the presence of thickened stratum cor-
neum, the aim should not be to promote further thickening
to the point of callus formation. In this case, shear defor-
mation is likely to be greater due to increased focal pres-
sure and, therefore, friction force and shear stress. Second,
many well-conditioned, seasoned competitors in sport and
experienced hikers during wilderness activities develop
friction blisters.26,42 Whether the cause is low intrinsic
shear resistance, an exceptionally long-duration or unac-
customed activity, unfavorable climatic conditions, preex-
isting structural abnormalities, or altered gait patterns due
to pain avoidance or injury, sometimes additional blister-
prevention strategies are needed.

Reduce the Magnitude of Shear Deformation

Decreasing the magnitude of shear deformation imparted
to the skin is the aim of most blister-prevention products and
techniques. Shear-deformation magnitude can be reduced in
4 ways: reduce friction force, apply shear-absorbing materi-
als, spread shear load over a larger area, and reduce bone
movement (Figure 1).
Reduce Friction Force. Friction is the force that

opposes the movement of one surface over another at an
interface. An interface exists between 2 materials in paral-
lel contact. Sliding or rubbing can occur at an interface,
which is resisted by a friction force. The likelihood of slid-
ing or rubbing motion depends on 2 factors: (1) the coeffi-
cient of friction (COF) between the 2 surfaces and (2) the
compressive force pressing them together.
Reduce the COF. The COF (m) is the common expres-

sion for frictional behavior at a material interface. It is
dimensionless and represents the ratio of friction force to
the normal force pressing 2 surfaces together. A low COF
corresponds to a low force required for sliding to occur,
whereas a high COF requires a higher force for sliding to
occur. Examples of low, medium, and high COFs include
polished oiled metal surfaces (m , 0.1), glass on glass (m ¼
0.4), and rubber on tarmac (close to m ¼ 1.0).43 The COF
determines the sliding capacity or the stickiness between 2
surfaces that form an interface. Common interfaces related
to blister prevention are the skin-sock interface, the sock-
shoe lining interface, the skin-skin interface within the
interdigital spaces, the sock-sock interface in the case of
double socks, and the shoe-ground interface.
Akers and Sulzberger44 described COF management by

the purposeful selection of materials in footwear design
and manufacturing to reduce friction over the most at-risk
points. Carlson6 suggested that materials placed between
the skin of the foot at various interfaces can change

friction. Indeed, Veijgen45 noted that the study of skin fric-
tion combines tribology, materials science, dermatology,
product development, and rehabilitation.
Blister-prevention techniques that focus on reducing the COF

target either the surface of the skin or the various interfaces that
exist between the foot and the shoe. By lowering the COF, these
interventions encourage slippage at a specific interface. The end
result theoretically allows increased motion across the interface
so the superficial integument can move in response to, or in
synch with, the movement of the underlying bone, thereby
decreasing the magnitude of the shear deformation within the
skin. Techniques include the use of lubricants; powders; all
moisture-management strategies, including moisture-wicking
socks; double-sock systems; polytetrafluoroethylene (PTFE)
patches; and some dressings.
Reduce pressure. Pressure-management strategies poten-

tially lessen blister formation by reducing friction force. With
less friction force, slippage at various material interfaces theo-
retically enables the skin surface to move in synch with the
underlying bone. The most well-known examples of pressure-
reduction blister-prevention strategies are cushioned insoles,
pressure-deflective padding, thick socks, and toe socks for the
interdigital spaces.
Pressure by itself is not the primary deforming force in

the pathomechanics of the friction blister.6,46–49 Naylor2

showed that when friction loads were doubled, skin damage
occurred 3 times as fast without any increase in vertical
force, indicating that friction force had a greater role in
blister injury than vertical compression force. However,
friction force is directly proportional to normal force (com-
pression force) and the COF between 2 surfaces. Therefore,
higher friction forces are found in areas of the foot that
have more pressure against the skin. Elevated compressive
force against the skin occurs in areas of bony prominences,
where the compressive force is concentrated over a smaller
surface area. In relation to the foot, plantar pressures are
generally higher in the forefoot than the rearfoot.50,51 This
pattern is further amplified in cases of pes cavus and equi-
nus deformity.52–58

Pressure-mapping technologies are primarily limited to
measuring compressive forces on the plantar surface of the
foot. However, other situations in which bone deformity
concentrates compressive force include the apices and dor-
sal interphalangeal joints of claw toes, interdigital contact
points from adductovarus digital deformity, and the poste-
rior calcaneus (Haglund deformity). In summary, the higher
the compressive force, the greater the resistance to synchro-
nous movement between the skin surface and the underly-
ing bone.
Apply Shear-Absorbing Materials. Most cushioning

materials not only reduce pressure but also absorb shear
strain by undergoing shear deformation themselves. In so
doing, these materials allow the skin surface to move in
synch with the underlying bone, limiting shear strain within
the soft tissues.6,11,44 A material’s ability to resist shear
deformation is known as the shear modulus, which is a
measure of the elastic shear stiffness of a material. A low
shear modulus indicates the material easily deforms when a
shear force is applied.
Shear-absorbing materials investigated in the prevention of

foot blisters include insole materials such as Spenco (Implus
Footcare LLC, Inc) and Poron (Rogers Corporation).59–61

Thick socks have been presumed to afford a level of blister
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protection via shear absorption.62 Although clinical testing to
date is lacking, gel toe devices might prevent toe blisters
because of the apparent low shear modulus of the material.
The challenge in applying shear-absorbing materials is match-
ing the shear modulus of the material with the functional
requirements of the area in question.
Spread the Shear Load. A purely speculative mecha-

nism of action of adherent tapes, moleskin, and dressings
in preventing blisters is spreading the shear load while not
necessarily reducing the COF or compression force. Blis-
ters occur at discrete locations, usually at bony promi-
nences where both compressive and shear forces are
concentrated over a small surface area. Researchers11,63

have postulated that adhesive materials affixed to an area
of skin larger than the bony prominence itself may broaden
the area of skin subjected to shear deformation. In this way,
shear deformation per unit area is decreased. To date, no
research and very little commentary on this mechanism of
blister prevention exist.
Reduce Bone Movement. At initial contact during

ambulation, the foot strikes the ground at a tangential angle
rather than in a purely vertical direction. This angle creates
shear forces exerted on the foot, resulting in anteriorly
directed shear deformation of the soft tissues. Similarly,
during push-off, the forefoot experiences a second shear
event in the opposite direction to the shear force at initial
contact, creating shear strain that is also in the opposite
direction to that at initial contact. The force of friction
keeps the skin surface and external footwear material inter-
faces in stationary contact for maximum efficiency as the
bones move and press into the ground for push-off.
Because of the compliance and various physical properties
of the epidermis, dermis, and subcutaneous layers, this
bone movement does not cause immediate or uniform
motion of the soft tissue located beneath. Temporospatial
gait and foot biomechanical factors cause excessive joint
mobility to influence the overall movement of bone.64

Bone movement and its critical influence on shear force
and resultant shear deformation occurring in the multilay-
ered overlying soft tissue “sandwich” are overlooked con-
tributing factors to blister formation. Evaluating excessive
bone movement at specific locations in the foot offers the
potential for implementing preventive methods and yet
remains underappreciated. For example, digital deformities,
such as hammertoes and claw toes, compromise the plantar
purchase or load-bearing capacity of the affected digit.65

With claw toes, the action of the flexor digitorum longus
(FDL) to directly plantar flex the digit to the supportive

surface is compromised due to reverse buckling of the toe
at the proximal and distal interphalangeal joints.66 In the
healthy intact toe, these joints remain in full extension,
enabling the action of the FDL to exert a pure plantar-
flexion moment at the metatarsophalangeal joint.67 With
the loss of the extensor apparatus of the toes, the FDL does
not plantar flex the digits at the metatarsophalangeal joint
and instead pulls the phalanges in a plantar and proximal
direction, accentuating shear forces at the apices of the toes
during push-off.68

On a more global level, kinetic and kinematic variables
may create gait abnormalities that increase the shear
forces at various locations of the foot. For instance, some
individuals demonstrate an “abductory twist” or “medial
whip” during the heel-rise phase of walking or running.
This transverse-plane motion of the foot creates shear
forces that can manifest along the medial border of the
first metatarsal head as well as the hallux. Excessive pro-
nation of the foot during midstance has been speculated to
cause the abductory twist motion during heel rise.69

The take-home message is that clinicians should evaluate
the location of recurrent blisters in patients and consider the
contribution of biomechanical mechanisms that may have
increased the shear load at the site of skin injury. Instead of
focusing solely on reducing friction at the skin surface, pro-
viders should address the abnormal motion of the bones
beneath the skin, which is the fundamental element of the
pathomechanics of the friction blister (Figure 2).

INDIVIDUAL BLISTER-PREVENTION STRATEGIES
TO REDUCE SHEAR-DEFORMATION MAGNITUDE

Antiperspirants

Even mild to moderate hydration levels of the feet are
known to increase skin friction and the likelihood of
blisters.1–3,49,70–74 Naylor1 recognized the protective effect
of dried skin against blister formation, confirming that moisture
reduced the number of shear applications the skin could with-
stand before blister damage. Therefore, antiperspirants have
been proposed to potentially have an indirect COF-reduction
blister-prevention effect by reducing skin-surface friction.
In military settings, antiperspirants that reduced blister

incidence concurrently caused significant irritant dermati-
tis.22,75,76 Formulations included aluminum chlorohydrate,75

aluminum zirconium tetrachlorohydrex glycine,75 and 20%
aluminum chloride hexahydrate in anhydrous ethyl alcohol.22

To reduce this adverse effect, researchers added emollient
additives to 20% aluminum zirconium tetrachlorohydrex

Anatomic Level

Bone

Soft tissue including
     skin layers

External to skin surface

Preventive Mechanism

Reduce pressure
Reduce bone movement

Increase resilience to shear 
     deformation
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Add shear-absorbing materials
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Figure 2. A diagrammatic representation of the opportunities for blister prevention.
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glycine concentration plus water.76 Although irritant dermati-
tis was not noted, the blister incidence was not different
among groups.
More recently, investigators73 observed the rate of tem-

perature change during shear loading of the skin at the pos-
terior heel on dry and hydrated skin in 20 healthy
participants. One foot was soaked in water to hydrate the
skin. The contralateral foot acted as a control. Intermittent
loading was applied until an observable change of 38C was
evident. A 38C increase in temperature was used as the end-
point of testing because this value had earlier been identi-
fied as the temperature change indicative of imminent
blister formation.5 The rate of temperature change of the
hydrated foot group was greater than that of the nonhy-
drated foot group (P ¼ .001) and showed a strong positive
correlation (r ¼ 0.520) with skin-surface hydration.73

Later authors77 found that an antiperspirant (Boots Anti-
Perspirant Foot Spray [The Boots Company, PLC]) did not
affect foot-skin hydration or the rate of temperature change,
which was thought to predict imminent blister formation.
Overall, the evidence indicates that nonirritating antiperspi-
rants do not prevent blisters.

Moisture-Wicking and -Absorbing Socks

Socks can potentially prevent blisters by reducing mois-
ture content on the surface of the foot, thereby reducing the
COF. In addition, sock-fiber properties and construction
that may affect friction blister rates include moisture
regain, swelling properties, water transport, heat transfer,
and the COF.78

Cotton is a hydrophilic fiber that inhibits moisture-
wicking ability.78 Cotton fibers absorb 3 times as much
moisture as synthetic acrylic fibers.78 When wet, cotton has
a 10-fold greater drying time than synthetic fibers.79 Con-
versely, synthetic fibers such as acrylic, polypropylene, and
polyester are hydrophobic and facilitate wicking by trans-
porting moisture along the fiber surfaces.80 A specialized
polyester fiber known as Coolmax (The LYCRA Company)
has a scalloped oval cross-sectional fiber geometry designed
to increase its surface area by 20% to facilitate moisture trans-
port.81 When comparing synthetic fibers, Bagherzadeh et al81

found that polyester fibers (Coolmax) dried 15% faster than
acrylic fibers.
Herring and Richie82 compared blister incidence in 35

long-distance runners wearing padded socks of identical
construction but different materials—100% cotton or 100%
acrylic fibers. The cotton-sock group developed twice as
many blisters and 3-times larger blisters than those in the
acrylic-sock group, suggesting that acrylic fibers were ben-
eficial over cotton fibers in athletic socks. The authors pro-
posed that the results were explained by a lower friction
force on the skin surface due to the superior moisture man-
agement of acrylic. However, in their follow-up study of
socks with reduced padding (contrary to the dense padding
in the first study), they demonstrated no difference in blister
frequency between cotton- and acrylic-fiber socks.62 The
investigators concluded that the superior blister-prevention
capacity of acrylic fibers over cotton fibers depended on
sock construction. They speculated that the wicking capac-
ity of acrylic fibers was enhanced by denser padding within
the sock, promoting better moisture movement from the skin
surface. Alternatively, they suggested that a sock’s ability to

prevent blisters could depend on some other mechanism
related to its thickness, such as pressure reduction or shear
force absorption.
Athletic hosiery dissipates pressure against the skin of

the foot, depending on the fiber composition as well as the
thickness or density of the fibers in the sock. Howarth and
Rome83 studied the plantar shock attenuation over 72 hours
of 5 types of athletic socks (cotton socks, wool cushion-
sole sport socks, acrylic cushion-sole hiking socks, double-
layer cotton socks, and toweling cushion-sole sport socks)
compared with that of barefoot participants. Only the wool
cushion-sole sport socks and acrylic cushion-sole hiking
socks displayed more shock attenuation than barefoot
walking. The cotton socks, double-layer cotton socks, and
toweling cushion-sole sport socks did not demonstrate
attenuation. In other studies,84–88 padded hosiery reduced
peak plantar pressures in the forefoot of patients with rheu-
matoid arthritis and diabetic neuropathy.
Although socks can affect moisture management to

reduce the COF, the inherent frictional properties of the sock
itself should also be considered.7 Burns89 assessed whether
polytetrafluoroethylene (PTFE or Teflon; Chemours) could
reduce friction blisters when incorporated into the heel, fore-
foot, and toe area of an athletic sock. Among 77 university
students participating in aerobics classes over 4 weeks, the
PTFE sock provided no protective effect against blisters. Dai
et al90 used a 3-dimensional finite-element model to simulate
the foot-sock-insole interfaces and investigated the effects of
wearing socks with different combinations of frictional prop-
erties on plantar foot contact. Wearing socks with low fric-
tion against the skin of the foot more effectively reduced
plantar shear force than wearing socks with low friction
against the insole.
Knapik et al7 recognized the multiple mechanisms by

which socks may reduce blister formation, including mois-
ture reduction and the ability to resist compression and
undergo deformation. This conclusion underscores the fact
that socks can be part of 3 strategies that can reduce the
risk of foot blisters: COF reduction, pressure reduction, and
shear absorption.
Several laboratory studies have been conducted to mea-

sure friction force and the COF of various sock fabrics and
sock fibers.78,91–93 Although examining friction force at the
sock-skin interface might offer insight into how fabric
structure and sock fibers affect the COF, relating these fac-
tors to blister formation in the feet should be done cau-
tiously. Laboratory methods do not fully replicate the
in vivo condition of a sock worn in a shoe. Even though the
authors of these investigations suggested that fabric struc-
ture was more important than fiber composition in terms of
friction force, other factors such as wicking, thermal dissi-
pation, and pressure reduction by socks must also be con-
sidered. The wicking capacity of socks demonstrated in
laboratory evaluations has not always been replicated in
research on sock performance in footwear during actual
physical activity. Without exposure of the entire sock to the
outside ambient environment, its moisture-absorptive
capacity may be more important than wicking for keeping
the skin of the foot dry. Sweat production by the foot has
been estimated to range between 381 and 447 g/h, which
can often overwhelm the simple wicking capacity of the
sock fibers.94,95
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Bogerd et al96 performed a field study with 37 military
recruits marching over 4 consecutive days to measure the
moisture content on the skin surface of the feet and retained
by the socks after marching. They also measured partici-
pants’ perceptions of skin temperature, overall dampness,
friction, and comfort via a questionnaire. Inexplicably, they
proposed that these variables were critical to the formation
of friction blisters on the feet but did not document blister
events. Of the 2 socks tested, a 50% Merino wool and 33%
polypropylene blend was rated as cooler, less damp, and
more comfortable than a 99% polypropylene sock. Surpris-
ingly, in these soldiers wearing prototype military boots
equipped with a GORE-TEX (W.L. Gore and Associates)
membrane, the wool-blend sock kept the surface of the foot
drier than the polypropylene sock in 2 locations (dorsal
metatarsals and posterior calcaneus), whereas the entire
plantar surface of the foot showed no difference in moisture
content when the 2 socks were compared. The wool-blend
sock absorbed 2.9 times the moisture of the polypropylene
sock. The authors speculated that the superior moisture-
storage benefits of the wool-blend sock outweighed the
wicking capacity of a polypropylene sock inside a closed
boot, where moisture evaporation is compromised. Thus, to
reduce the moisture content on the skin surface, the absorp-
tive capacity of a sock becomes most important when the
footwear is resistant to vapor evaporation.96

Finally, the thermal-conductive properties of sock fibers
are important considerations for blister prevention. Reduc-
ing or evacuating heat from the skin surface depends on the
thermal conductivity of the sock fibers. Cotton fibers have
a low thermal conductivity of 0.07 W/m·K. Polyester has an
average thermal conductivity of 0.14 W/m·K, and polyamide
(nylon) has a high thermal conductivity of 0.25 W/m·K but a
6-fold greater moisture regain than polyester.78

Overall, even though many hosiery products are adver-
tised as preventing blisters, scientific evidence for this ther-
apeutic effect is lacking. The only confirmation came from
the combined results of 2 double-blind studies in which
acrylic socks reduced the blister risk when they were dense
and padded rather than thin.62,82

Socks Versus No Socks

When individuals place their foot in a sock and then in a
shoe, multiple interfaces are established. Each interface has
its own COF, and slip will occur where the COF is the low-
est. Sanders et al97 compared the COFs of the skin-
material, sock-material, and skin-sock interfaces. They
chose materials used in the orthotic and prosthetic profes-
sion (Spenco, Poron, nylon-reinforced silicone, soft pelite,
medium pelite, firm Plastazote [Zotefoams], regular Plasta-
zote, and NickelPlast [AliMed]), and the sock material was
wool. The COFs at the skin-material interfaces were higher
than those at the skin-sock interfaces. This result supported
the beneficial effect of wearing socks, which provide a
skin-sock interface, versus wearing shoes without socks,
which provide only a skin-material interface. Most running
and walking athletes wear socks, but triathlon athletes,
many of whom prefer the time-saving aspect of forgoing
socks (skin-material interface) during the transition from
the swimming to the running leg of the race, have a high
blister incidence.98

Double-Sock Systems

Double-layer sock systems are a COF-reduction strategy
used to create an additional material interface. The inten-
tion is for the sock-sock interface to exhibit a lower COF
than both the skin-sock and shoe-sock interfaces so that
slippage occurs between the sock layers. Various military
organizations have indicated considerable interest in deter-
mining how these sock systems can prevent friction blisters
on the feet of marching soldiers.
Blister incidence and severity were investigated in 357

Marine recruits participating in basic Marine Corps train-
ing.99 Training took place 6 days per week for 12 weeks
and included road marches, endurance activities, combat
courses, and drills. Recruits wore either standard-issue
socks or 1 of the following 2 double-sock systems: a
standard-issue sock plus a thin polyester inner sock or a
very thick, dense, wool-polypropylene prototype outer sock
over a thin polyester inner sock. The standard-issue sock
was described as a 1-twist-per-inch sock, thicker at the heel
and sole where the fabric composition was 50% wool and
50% cotton with spandex, with the remainder of the sock
being 50% wool, 30% cotton, and 20% nylon. The authors
provided no information about the white polyester liner
sock other than describing it as thin. The prototype sock
was characterized as a uniformly thick 50% wool and 50%
polypropylene sock with a thread density of 7 twists per
inch. Blister incidence was 69% for the standard group,
77% for the standard-plus-inner-sock group, and 40% for
the prototype-plus-inner-sock group. Severe blisters requir-
ing medical attention occurred in 24%, 9%, and 11% of the
groups, respectively. The double-sock systems were some-
what more protective against blisters than a single sock.
The standard-issue sock plus liner reduced blister severity,
but the dense prototype wool sock combined with a polyes-
ter liner reduced both overall blister incidence and severity.
Jagoda et al39 compared blister incidence and severity in

a group of 221 male lieutenants on their first training hike
using 1 of 3 sock and powder conditions: standard-issue
sock only, white athletic sock plus nylon sock plus powder,
and standard-issue sock plus white athletic sock plus pow-
der. Blister incidences were 59%, 41%, and 22%, respec-
tively. Blister severity was highest with the standard-issue
sock only. Van Tiggelen et al37 addressed the effect of dif-
ferent sock systems in 189 Belgian military recruits under-
going basic military training. The control group wore the
standard-issue military sock (70% combing wool and 30%
polyamide). A second group wore padded polyester socks
(88% polyester, 11% polyamide, and 1% elastane), and a
third group wore a double-sock combination of a thin inner
sock (45% polyester, 45% viscose, 8% polyamide, and 2%
elastane) under a thick cotton-wool sock (40% cotton, 40%
wool, 18% polyamide, and 2% elastane). Blister incidences
were 51%, 16%, and 32.3%, respectively, showing that the
single-sock condition of the padded polyester sock offered
greater blister protection than the double-layer sock system.
This increased level of blister protection may suggest that
the hydrophobic polyester fibers created lower friction con-
ditions at the skin-sock, sock-shoe, or both interfaces than
the lower friction conditions between the layers of the
double-sock system. Separately, the protective effect may
have reflected the thickness of the sock, providing a
pressure-reduction or shear-absorption mechanism.
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Overall, the evidence for double-sock systems is equivo-
cal. In 1 study, 2 double-sock systems reduced the blister
incidence versus a single sock.39 Other researchers found
that only 1 of 2 double-sock systems decreased the blister
incidence compared with a single sock.99 In a third study, a
single-sock condition was more protective than a double-
sock system.37 The material composition and thickness of
the 2 socks likely affected the outcome and varied consid-
erably in the 3 examinations.

Toe Socks

Toe socks have become popular in endurance running
and hiking. Their most obvious mechanism of action is
pressure reduction by adding cushioning bulk to the inter-
digital space. Of importance, any pressure relief from this
interdigital padding depends on the available room in the
toe box of the shoe. Alternatively, toe socks can potentially
offer a reduction in the COF via the double-sock layers in
the interdigital space.
To date, the effectiveness of toe socks has not been estab-

lished. However, while testing the effectiveness of paper tape
on all toes on the experimental foot, Lipman et al100 found that
the simultaneous use of Injinji (Injinji Inc) toe socks was asso-
ciated with an increased blister occurrence. Specifically, 34%
of feet that were taped and wore toe socks sustained blisters,
whereas 27% did not incur blisters.100 They did not explicitly
state that these blisters occurred on the toes and did not com-
ment on an increased blister incidence with the simultaneous
use of paper tape and toe socks in the follow-up study 2 years
later.101 Overall, toe socks have not been adequately tested to
enable any conclusions to be drawn.

Lubricants

Lubricants reduce the COF between surfaces and are usu-
ally applied to the skin, targeting the skin-sock interface. The
2 types of wet lubrication are boundary and fluid. Boundary
lubrication describes the separation of 2 surfaces by a lubri-
cant film. In this case, friction is influenced by the nature of
the underlying surfaces as well as by the lubricant. Fluid
lubrication describes the separation of 2 surfaces by a thick
lubricant film. In this case, friction depends entirely on the
physical properties of the lubricant itself. Of the 2, fluid lubri-
cation appears to reduce friction more effectively.2

Fluid lubrication depends on the amount of lubricant
applied and its ability to stay in situ on the skin. Highley
et al72 added 50 lL (50 mL3) of mineral oil to 1 square inch
(6.4516 cm2) of skin and measured friction against a rotat-
ing nylon head. A substantial and prolonged decreased fric-
tion level occurred. Nonetheless, when the rotating nylon
head was cleaned at 1-minute intervals with hexane-treated
tissue, friction levels initially decreased and then gradually
increased, reaching a maximum after 15 minutes.
Investigators studying boundary lubrication of the skin

of the abdomen102 and volar forearm103 and its effect on
skin friction showed that water and both mildly and moder-
ately greasy moisturizers increased friction levels. Only
viscous lubricants (petrolatum, mineral oil, and glycerin)
reduced friction levels, for approximately 90 minutes. At 3
hours, friction levels rose 35% above baseline.103

Although numerous lubricant products are aimed at the
blister-prevention market, their use in preventing foot

blisters is unknown.41 Only skin-friction studies, such as
those mentioned earlier, exist, and none included foot skin.
However, it is intuitive that the friction-reducing effect of
lubricants is limited, owing to absorption and the dissipa-
tion of the product in active situations.7 If lubricants are
identified as effective, the requirement to reapply them to
the feet to provide ongoing blister protection limits their
use in many situations, including running events and mili-
tary settings.

Powders

Powders have been used in skin-friction studies based on a
strategy of producing a drier integument.2,104 They offer 2
COF-reduction effects to reduce friction force at the skin sur-
face. First, powders absorb moisture to dry the skin.1,2 Sec-
ond, powders work as a dry lubricant.104 Yet in British Army
participants using talcum powders, either no difference (when
compared with a control group) or a higher blister incidence
among those using the powder was noted.7 When powder
becomes wet, frictional forces increase.77,104 Investigators7,104

have also suggested that, when sweat and powder combine,
the material clumps and becomes abrasive.
The effectiveness of self-chosen prevention strategies was

determined in 50 participants pursuing two 5-day, 219-km
multistage ultramarathons.20 At the end of each day, blister
frequency and severity were recorded, as well as the preven-
tive measures used. Two runners used talcum powder alone.
Five runners used talcum powder with combinations of lubri-
cants, antiperspirants, and taping. Blister formation was not
reduced in the runners using talcum powder, antiperspirants,
lubricants, or any combination of these. Still, the sample size
may have been too small to show any difference.
Other researchers77 tested 3 topical agents for their effect

on skin-surface hydration and rate of temperature change
while shear cycles were imparted to the posterior calcaneal
skin. These products were Flexitol Blistop (a film-forming
compound), Boots Anti-Perspirant Foot Spray (an aerosol
antiperspirant spray), and 2Toms BlisterShield powder
(PTFE and polyethylene wax). The powder decreased skin-
surface hydration, suggesting a possible blister-preventive
effect. However, it did not affect the rate of temperature
change, which the authors thought would predict blister
formation. The other products did not affect skin-surface
hydration or the rate of temperature change.
Current evidence indicates that powders are either inef-

fective or increase the blister risk.

Tape, Moleskin, and Dressing

The application of adhesive tape on the feet to prevent
blisters is a common intervention used by clinicians and
individuals.11,20,63,100,101 Brennan105 and Richie8 stated that
the scientific evidence behind using adhesive tape for blister
prevention was lacking. Since then, 2 prospective random-
ized comparative studies have been performed on the use of
paper tape to prevent blisters in ultramarathon runners.100,101

In the first study of 136 participants during a series of
6-stage ultramarathons, paper tape was applied to “the
majority of common blister sites” on 1 randomly selected
foot, with the untreated foot acting as the control.100 All 90
athletes who completed the study developed blisters. No
protective effect of paper tape was demonstrated. In fact,
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the blister incidence was higher for the experimental foot,
with 47 runners (52%) sustaining blisters on the taped foot
versus 35 runners (39%) sustaining blisters on the control
foot. Eight participants experienced blisters on both feet.
In the second study of 128 participants competing in a

series of 6-stage ultramarathons, paper tape was applied to a
randomly selected foot, either to participants’ self-reported
blister-prone areas or to 1 randomly selected location if the
participant had no blister history.101 The untaped areas of the
same foot, not the contralateral foot, served as the control.
Eighty-three percent (n ¼ 106/128) developed blisters. Of the
109 participants who completed the study, 8 participants sus-
tained blisters on taped areas, 74 participants sustained blisters
on untaped areas, and 7 participants remained blister free.
Therefore, paper tape effectively reduced the blister incidence
when applied to areas of the foot that the participant deemed
blister prone, with an absolute blister reduction of 40% and a
number needed to treat of 1.31.
The mechanism by which paper tape prevents friction blis-

ters is worth considering. Tape may be assumed to prevent
blister formation through a COF-reduction strategy.7 Nonethe-
less, although the COF of the tape-sock interface may be
lower than that of the skin-sock interface, friction data for
tapes used in blister management are lacking. Some friction
data exist for other adhesive products, including moleskin and
blister dressings. Polliack and Scheinberg46 determined the
frictional properties of 11 bandages used to treat blisters,
including Compeed (Johnson & Johnson), 2 types of mole-
skin, 2 Band-Aid (Johnson & Johnson) products, and their
own bandage called Bursatek (Advanced Wound Systems
LLC). The mean COF ranged from 0.57 to 1.54 (Figure 3).
The authors also evaluated the thickness of the bandages, rec-
ognizing that thick products may add pressure to the blistered
area. They reported that thickness and COF were not propor-
tional, as the thinnest bandage, Tegaderm (3M Health Care),
exhibited the highest COF. Bursatek was the second thinnest
bandage but exhibited the lowest COF, a presumably desirable
combination in blister treatment.
A friction-reducing blister-prevention effect may be

assumed of tapes, moleskin, and certain dressings.7 How-
ever, questions exist about how effectively some of these
materials reduce friction.63,106 Moleskin is a durable cotton
fabric, and many tapes are made from cotton, including
RockTape (Implus LLC), KT Tape, and some athletic

tapes.106–109 Cotton is known for poor moisture-management
capabilities.79,110

A theoretical mechanism of shear-load spreading has
been proposed as a strategy to lessen the magnitude of
shear deformation using adhesive products applied to the
skin, including tapes, moleskin, and dressings.11,63,106,111

Although lacking any substantiating research, the concept
assumes that, when adhering a material to an area of skin
larger than the bony prominence or blister site itself, shear
gradients are reduced as the shear load is spread over a
wider area. Theoretically, a rigid tape would perform this
function more effectively than a flexible tape.63 Note that
the paper tape used by Lipman et al100,101 was nonelastic
and, thus, would be considered a rigid tape.
Overall, the only evidence that exists is for paper tape. That

evidence is drawn from 2 high-quality prospective random-
ized comparative studies.100,101 However, the evidence is
equivocal, with 1 study showing a higher incidence of blisters
and the other showing a strong preventive effect. Further
research is needed to determine the effectiveness of paper
tape. In addition, clinical trials that involve tests of other tapes
commonly used in blister prevention are required.

Callus

We have discussed shear-induced epidermal adaptations
that increase the skin’s resilience to shear load. A protective
shear-load spreading effect from a thickened stratum cor-
neum, as described for taping, may also provide a level of
blister protection.30 Sanders et al30 postulated that the
increased epidermal volume through which shear load is dis-
tributed results in lower shear-stress gradients and, therefore,
may reduce the risk of intraepidermal failure. Yet a thickened
stratum corneum can reach a point at which it forms a callus,
which is a known risk factor for a friction blister on the
foot.11,40 Presumably, a middle ground exists between moder-
ate and excessive stratum corneum thickening.

Polytetrafluoroethylene Patches

Focusing on COF reduction, investigators112–114 have tested
laboratory friction in 5 materials frequently used in the orthot-
ics and prosthetics profession: ShearBan (PTFE; Tamarack
Habilitation Technologies, Inc), russet leather, Poron, Spenco,

Figure 3. Laboratory product comparisons using a custom-made friction measurement apparatus. Used with permission of Elsevier,
from Polliack and Scheinberg.46 A new technology for reducing shear and friction forces on the skin: implications for blister care in the
wilderness setting. Wilderness Environ Med. 2006;17(2):109–116; permission conveyed through Copyright Clearance Center, Inc. Abbre-
viation: CoF, coefficient of friction.
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and Plastazote, interfaced with either cotton or polyester Cool-
max socks in both dry and 30% moisture conditions. Accord-
ing to Payette,114 all orthosis materials exhibited lower COFs
under dry conditions than under moist conditions except for
the Plastazote-cotton sock interface. Overall, ShearBan had
the lowest COFs under both dry and moist conditions com-
pared with leather, Poron, Spenco, and Plastazote.114

Carlson6 measured the COF between cotton and 4 of the
same materials: ShearBan (PTFE), Poron, Spenco, and Plasta-
zote. The moisture content of the cotton sock was the indepen-
dent variable and varied from 0% to 100% by weight. The
COFs of the sock against PTFE and Plastazote were 0.17 and
0.47, respectively, and those values were not affected by
increases in sock-moisture content (Figure 4). Spenco, an insole
material, showed a rather continuous COF increase as the sock
gained moisture, and PPT-Poron (Langer Biomechanics) dis-
played an increase in COF to a moisture content of about 35%
and then little further rise. Although these laboratory investiga-
tions were favorable, no blister-incidence research has been
conducted with clinical trials testing this product.

Cushioned Insoles

Cushioning materials present a pressure-reduction strat-
egy for blister prevention. Friction force is directly propor-
tional to pressure (compression force) and the COF

between 2 surfaces. Therefore, higher friction forces occur
in areas of the foot that have higher compressive forces
against the skin. Cushioning materials and fixed-volume
gel materials limit peak pressures by expanding the area of
contact, thereby spreading the vertical load.6 This concept
can be applied to cushioning at any anatomic location of
the foot, including insoles used under the feet and toe cush-
ions. The effectiveness of the material depends on its thick-
ness versus its effects on mechanical efficiency: excessive
cushioning can negatively affect the energy expenditure of
locomotion.6

Tong and Ng115 studied the ability of 4 Poron-cushioned
or Poron and Plastazote-cushioned insoles to reduce peak
pressure at plantar locations of the foot. A combination of
Poron and a firm Plastazote material was most effective.
House et al116 compared the effectiveness of 2 insoles for
preventing blisters. A group of 1416 Royal Marine recruits
used standard flat 3-mm coarse-weave polyvinylidene chlo-
ride insoles aimed at thermoregulation, and 1338 recruits
received 3-mm shock-absorbing insoles. The shock-absorbing
insoles consisted of a 3-mm-thick layer of cellular polyure-
thane foam with a felt top sheet, an underlay of 99% polyester
and 1% polyethylene, and a 3-mm-thick cellular polyurethane
foam heel pad. The shock-absorbing insoles did not protect
against blisters, with incidences of 17.2% (polyvinylidene
chloride insoles) and 18.6% (shock-absorbing insoles).
Cushioning materials can also provide a shear-absorption

strategy for blister prevention based on their ability to deform
and rebound, a physical property defined as the shear modu-
lus.11,44 Spence and Shields59,60 described the shear-absorption
function of closed-cell cushioned insole materials as a ball-
bearing effect. As opposed to open-cell materials, closed cells
in rubbers or foams are independent and allow lateral move-
ment of 1 cell relative to adjacent cells. They discussed a new
closed-cell neoprene that absorbed 1 cm of fore, aft, and lat-
eral shear and 258 of rotary shear, as well as vertical forces.
The insole developed by Spence and Shields59,60 was one-
eighth–inch (0.3175-cm) thick and had a stretch nylon top
cover to lower the surface friction force and aid the sock-clad
foot’s sliding into the shoe. This insole was used in 1 shoe,
with the other foot serving as the control, for a period of 3 to
12 months, among 200 athletes with self-reported blister con-
cerns or general foot discomfort; only 1 athlete sustained a
blister with the insole. Thus, 99.5% of feet with the neoprene
insole remained blister free, whereas 75% of feet without the
insole were blister free.
The same closed-cell neoprene polymer rubber (Spenco)

was compared with an open-cell polyurethane (Poron) for
blister and callus formation in 90 recruits from the US
Coast Guard Training Center undergoing an 8-week train-
ing regime.61 Among the 30 participants in each of the 3
groups (control group, Poron insoles, and Spenco insoles),
most blisters and calluses occurred in the control group (8
participants) compared with the Poron (4 participants) and
Spenco (1 participant) groups.
Spence and Shields59,60 also assessed a silicone gel mate-

rial that prevented decubitus ulcers in patients who were
bedridden. They performed preliminary experiments using
the same material for blister prevention. Although it
reduced shear within the skin, its high elasticity (low shear
modulus) produced instability under the foot.
Overall, the evidence supports the use of neoprene or

Spenco insoles for blister prevention.

Figure 4. Coefficient of friction (COF) between cotton and 4 differ-
ent support surface materials. The moisture content of the cotton
sock is the independent variable and varies between 0% and 100%
by weight. The COFs of the sock against polytetrafluoroethylene
(PTFE) and against Plastazote are approximately 0.17 and 0.47,
respectively, and those values are not significantly affected by
increases in sock moisture content. Spenco, an insole material,
shows a rather continuous COF increase as the sock gains mois-
ture, and PPT-Poron showed a significant jump in COF to a mois-
ture content of about 35% and then little further increase. Spenco,
Implus Footcare LLC, Inc. PPT-Poron, Langer Biomechanics. Plas-
tazote, ZOTEFOAMS. From Carlson6 JM. Functional limitations from
pain caused by repetitive loading on the skin: a review and discus-
sion for practitioners, with new data for limiting friction loads. J
Prosthet Orthot. 2006;18(4):93–103. https://journals.lww.com/
jpojournal/pages/default.aspx. and republished with permission.
The Creative Commons license does not apply to this content. Use
of the material in any format is prohibited without written permis-
sion from the publisher, Wolters Kluwer Health, Inc. Please contact
permissions@lww.com for further information.
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Footwear Fit

Ill-fitting shoes are often cited as a primary cause of foot
blisters.41,117 Tightly fitted shoes may increase compressive
forces against bony prominences and thereby increase friction
forces. Alternatively, loosely fitted shoes may allow excessive
sliding of the foot, which could increase shear. No scientific
studies have been conducted to verify the role of properly fit-
ted footwear or lacing techniques in blister prevention.

Pressure-Deflective Padding

Deflective padding in the form of donut pads is a common
blister-management technique using a pressure-reduction
strategy.41,105 This padding typically contains moleskin with
an aperture cut in the middle and is placed over the “hotspot”
or blister-susceptible area of skin. Presumably, the thicker the
padding, the better the pressure decrease. The effectiveness of
felt deflective paddings of different thicknesses to reduce
peak pressure has been documented as follows:

• 5-mm felt padding reduced pressure by 24% to 31%118

• 7-mm felt padding was more effective than 5-mm felt
padding at reducing peak pressure119

• 7-mm felt modified donut pad reduced pressure by 25%120

• 20-mm felt padding reduced peak plantar pressure by 49%121

These results indicate that a thicker material can poten-
tially reduce peak plantar pressures better than thinner
materials. However, the relevance and effectiveness of
pressure reduction with deflective pads for preventing fric-
tion blisters have not been investigated.

Loose-PackedWool

Another strategy for blister prevention that has not been
verified is the use of loose-packed wool. Although the hiking
community has predominantly used loose-packed Merino
wool to prevent blisters around the toes, no research exists on
its true effectiveness. Similar to the incorporation of wool
fibers into hosiery, the application of loose-packed wool
around the toes may locally lessen pressure against the integu-
ment, acting as a pressure-reduction strategy. Another
expected benefit of wrapping wool around the toes would be
lowering the moisture content of the skin and acting as a
friction-reduction strategy. Alternatively, loose-packed wool
around the toes may be a shear-absorption strategy, with the
wool fibers moving independently across one another. In
doing so, the wool sample would undergo shear deformation,
decreasing the shear force applied to the foot. Whether the
intervention prevents blisters during physical activity needs to
be verified in future clinical trials.

Biomechanical Alterations

Shear-stress distribution on the plantar surface of the forefoot
and toes was evaluated in 3 groups of 11 volunteers each while
they walked barefoot over a shear and pressure platform: adult
runners with frequent blisters, an adult control group who were
moderately active and without blisters, and a pediatric control
group (aged 10 to 17 years) who were typically physically
active and without blisters.26 The blister group demonstrated
increased pressure and shear-stress magnitudes compared with
the control groups, and the authors suggested that contact time
might play a role in blister formation. They postulated that

these disparities may be due to differences in the frictional
properties of the skin, intrinsic muscle activity, or higher pres-
sure magnitudes. Contrary to this notion, researchers37,122 in 2
studies found no differences in blister incidences among partici-
pants with self-reported (via questionnaire) pes cavus (high
arches), pes planus (flat feet), or normal feet.
Clinicians typically implement biomechanical interven-

tions to address pressure and shear-induced conditions in
the human foot. These interventions include the following:

• Foot orthoses with specific design features123–127
• Footwear with specific design features128,129
• Gait alterations and athletic taping130,131
• Digital orthoses132,133
• Stretches, strengthening, manual therapies, and surgical
procedures to reduce joint stiffness and increase range of
motion134–139

Currently no published studies have verified that any type
of foot orthosis, taping technique, shoe, digital device, manual
therapy, or gait pattern can prevent blister formation on the
foot, and this knowledge gap offers opportunities for future
research. At the same time, interventions such as inserts and
taping intended to treat other conditions of the foot may inad-
vertently contribute to blistering events.

Miscellaneous Blister-Prevention Strategies

Environmental debris that enters the shoe, such as sand,
pebbles, and rubber from synthetic turf fields, can cause
blisters. Even though bulky detritus increases focal pres-
sures and subsequently friction force, it is more likely to
cause a superficial-to-deep abrasion injury. Regardless, pre-
venting entry into the footwear is important. Gaiters are
frequently used in hiking, trail running, and desert ultra-
marathons for this reason.41

Creases in socks should be avoided, as they intensify focal
pressure. Similarly, folds and excess bulk after applying ath-
letic tape to the foot and ankle should be minimized with
appropriate tape selection, appropriate application technique,
and the use of an adhesive enhancer product to prevent loos-
ening. Regular inspection of socks, insoles, and footwear lin-
ings should be performed for signs of excessive compaction
and wear. These areas of material degradation will be less
able to absorb shear strain and increase friction force by rais-
ing either focal pressure or the COF, predisposing the individ-
ual to blister formation if not abrasion injury.

Summary of Clinical Evidence

Many of the interventions commonly used to prevent fric-
tion blisters lack evidence. Some have been tested in the labo-
ratory, but few have been tested for effectiveness in real-life
situations. Evidence exists for use of the following:

• Strategies that allow adaptive skin changes, including
familiarity with footwear and the activity21,24,36–39

• Neoprene or Spenco insoles59,61
• Densely padded acrylic socks62,82

Evidence does not support use of the following:

• Antiperspirants, as they do not reduce the blister
risk75,76,140
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• Talcum powder, as it either has no effect or increases the
blister risk7,20

Evidence is equivocal for use of the following:

• Double-sock systems, with inconsistent blister outcomes
shown in 3 studies37,39,99

• Paper tape, with only 2 similar studies performed, includ-
ing 1 that showed blistering was worse100 and the other
that showed a strong preventive effect101

Finally, many strategies have theoretical benefit, but they
have either insufficient or no evidence to support their use.
These strategies include optimized footwear fit; lubricants;
BlisterShield powder; PTFE patches; tapes other than paper
tape; pressure-deflective padding; gel materials; loose-
packed wool; toe socks; socks of specific yarn or fiber com-
position or construction technique; and biomechanical
interventions including stretches, strengthening, physical
therapy, foot orthoses, digital orthoses, specific footwear
properties, and gait alterations.
More research is needed to support or disprove often

used, theoretically coherent, and anecdotally successful
blister-prevention strategies. Furthermore, investigators
should focus on the primary mechanism of friction-
blister pathomechanics, the asynchronous motion of
bones relative to the overlying integument. In addition,
determining if particular strategies are useful at specific
anatomic sites would be helpful.

CONCLUSIONS

Few blister-prevention products, methods, or practices are
backed by clinical evidence. Current evidence supports the
use of densely padded acrylic socks, neoprene insoles, and
strategies that promote adaptive skin changes, including
familiarity with the footwear and the activity. Conversely,
antiperspirants and powder have been found to be nonprotec-
tive. The evidence for paper tape and double-sock systems is
equivocal. The value of other strategies, even those that make
intuitive sense or are in popular use, such as optimized foot-
wear fit, most athletic tapes, lubricants, and biomechanical
improvements, has not been confirmed sufficiently with clini-
cal research or at all.
Finally, the aim of every blister-prevention strategy is to

prevent shear-induced mechanical fatigue from resulting in
intraepidermal tear. As such, effective opportunities for blister
prevention involve maximizing the intrinsic resilience of the
skin to shear deformation, reducing the number of shear-
deformation episodes, and reducing the magnitude of shear
deformation. These goals can be achieved by reducing the
friction force via decreasing the COF and pressure at the vari-
ous skin and footwear interfaces, absorbing shear with materi-
als external to the body, spreading the shear load over a larger
area with products adhered to the skin, and limiting the
motion of the bones adjacent to the blister location.
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