
Journal of Athletic Training 2025;60(1):11–20
doi: 10.4085/1062-6050-0396.23
� by the National Athletic Trainers’ Association, Inc
www.natajournals.org

Injury Risk Identification

Movement Clearing Screens for Military Service
Member Musculoskeletal Injury Risk Identification

Eric J. Shumski, PhD*†‡; Megan Houston Roach, PhD, ATC*§||;
Matthew B. Bird, PhD, CSCS*||; Matthew S. Helton, PT, DSc¶;
Jackson L. Carver, MA*||; Timothy C. Mauntel, PhD, ATC*§||

*Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA; †University of
Georgia, Athens; ‡Oak Ridge Institute for Science and Education (ORISE), Department of Energy, Oak Ridge, TN;
§Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD; ||Department of Clini-
cal Investigations, Womack Army Medical Center, Fort Liberty, NC; ¶US Army, Fort Liberty, NC

Context: Pain during movement screens is a risk factor for
musculoskeletal injury (MSKI). Movement screens often require
specialized or clinical expertise and large amounts of time to
administer.

Objective: Evaluate if self-reported pain (1) with movement
clearing screens is a risk factor for any MSKI, (2) with move-
ment clearing screens is a risk factor for body region–specific
MSKIs, and (3) with a greater number of movement clearing
screens progressively increases MSKI risk.

Design: Retrospective cohort study.

Setting: Field-based.

Patients or Other Participants: Military service members
(n ¼ 4222).

Main Outcome Measure(s): Active-duty service members
self-reported pain during movement clearing screens (Shoulder
Clearing, Spinal Extension, Squat-Jump-Land). Musculoskele-
tal injury data were abstracted up to 180 days post-screening.
A traffic light model grouped service members if they self-
reported pain during 0 (Green), 1 (Amber), 2 (Red), or 3 (Black)
movement clearing screens. Cox proportional hazards models
adjusted for age, gender, body mass index, and prior MSKI

determined the relationships between pain during movement
clearing screens with any and body region–specific MSKIs.

Results: Service members self-reporting pain during the
Shoulder Clearing (adjusted hazard ratio and 95% confidence
interval [HRadj (95% CI)] ¼ 1.58 [1.37, 1.82]), Spinal Extension
(HRadj ¼ 1.48 [1.28, 1.87]), or Squat-Jump-Land (HRadj ¼ 2.04
[1.79, 2.32]) tests were more likely to experience any MSKI
than service members reporting no pain. Service members
with pain during the Shoulder Clearing (HRadj ¼ 3.28 [2.57,
4.19]), Spinal Extension (HRadj ¼ 2.80 [2.26, 3.49]), or Squat-
Jump-Land (HRadj ¼ 2.07 [1.76, 2.43]) tests were more likely to
experience an upper extremity, spine, back, and torso, or lower
extremity MSKI, respectively, than service members reporting
no pain. The Amber (HRadj ¼ 1.69 [1.48, 1.93]), Red (HRadj ¼
2.07 [1.73, 2.48]), and Black (HRadj ¼ 2.31 [1.81, 2.95]) cohorts
were more likely to experience an MSKI than the Green cohort.

Conclusions: Self-report movement clearing screens in
combination with a traffic light model provide clinician- and
nonclinician-friendly expedient means to identify service mem-
bers at MSKI risk.
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Key Points

• Military service members reporting pain on any movement clearing screen are at greater risk for any musculoskeletal
injury than service members reporting no pain.

• Musculoskeletal injury risk progressively increases as military service members report pain on more movement
clearing screens compared with service members reporting no pain.

• Self-report movement clearing screens in combination with a traffic light model provide an expedient means to
identify military service members at greater musculoskeletal injury risk, which may be executed at scale without
medical providers.

Noncombat-related musculoskeletal injuries (MSKIs)
significantly diminish individual military service
member and force medical readiness.1,2 In 2019,

MSKIs accounted for 55% of all limited duty days (ie,
10 million days), precluding 4% of active-duty Army service
members from deploying with their units.1,2 Musculoskeletal
injuries also incur significant financial and medical resource
burdens for the military.3 Thus, identifying service members
at the greatest risk for MSKI is essential so they may be

targeted with MSKI risk mitigation interventions in a proac-
tive manner.
Multifactorial MSKI risk assessments are necessary to

comprehensively identify key variables contributing to
MSKI risk.4,5 A common component of comprehensive
MSKI risk assessments is movement screens (eg, squats,
jumps).6–8 A variety of movement screens have been imple-
mented, with varying levels of success in identifying indi-
viduals with greater MSKI risk in both military and civilian
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populations.9,10 Most of these screens can require a significant
amount of time and technical expertise to employ. These
requirements make movement screens impractical for most cli-
nicians and non-clinicians when assessing service members,
athletes, or patients en masse, given time constraints and lim-
ited clinical personnel or resources. Clinical-based movement
screens, including the Landing Error Scoring System and
Functional Movement Screen (FMS), reduce the need for tech-
nical expertise (eg, computer software expertise) but still
require extensive time and training to administer.8 Optimizing
the efficiency of clinical-based movement screens will aid cli-
nicians’ and non-clinicians’ time constraints in identifying
MSKI risks.
As a whole, the FMS does not have clinical utility in pre-

dicting future MSKI among active-duty service members.10

However, movement clearing screens, which identify pain
during prescribed movements, have shown clinical utility
for identifying service members at greater MSKI risk.11–13

Additionally, movement clearing screens require minimal
time and no equipment or technical expertise, as they are
entirely self-reported.11–13 US Army Rangers and conven-
tional Army soldiers self-reporting pain during movement
clearing screens were more likely to sustain an MSKI than
individuals who did not report pain.12,13 Authors of a study
among active-duty soldiers found that reporting pain on the
deep squat, hurdle step, in-line lunge, trunk stability push-
up, or rotary stability of the FMS movements related to
future MSKI; however, they only investigated pain during
the FMS movements in isolation and not in combination
with each other to assess future MSKI risk.14 Authors of
only 1 study have examined if pain during multiple move-
ment assessments versus only 1 movement assessment
increases future MSKI risk.11 Army soldiers reporting pain
on 1, 2, 3, or 4 or more of the 7 FMS movements exhibited
a 40%, 86%, 142%, or 183% higher risk of future MSKI,
respectively, than those reporting no pain.11 Further, spe-
cific relationships between movement clearing screens and
body region–specific MSKIs (ie, Shoulder Clearing Test
and upper extremity MSKI) have not been explored. Collec-
tively, these findings suggest self-report movement clearing
screens may be able to identify MSKI risk with similar accu-
racy and greater efficiency compared with more complex
clinician-assessed movement screens.11

The primary purpose of this study was to determine if
self-reported pain during any movement clearing screen
(Shoulder Clearing Test, Spinal Extension Test, Squat-
Jump-Land) was associated with a greater risk for future
MSKI within 180 days of testing. Secondarily, we assessed
if pain during each movement clearing screen was associ-
ated with a greater risk for a relevant body region–specific
MSKI (eg, Shoulder Clearing Test pain and upper extrem-
ity MSKI). Finally, we determined if reporting pain on mul-
tiple movement clearing screens progressively increased
service members’ MSKI risk compared with reporting no
pain on any movement clearing screen. We hypothesized
reporting pain on any movement clearing screen would be
a risk factor for future MSKI within 180 days of testing.
Secondarily, we hypothesized pain during a specific move-
ment clearing screen would be a risk factor for future body
region–specific MSKIs. Finally, we hypothesized that MSKI
risk would progressively increase as service members
reported pain on additional movement clearing screens.

METHODS

We performed a retrospective cohort study15 of existing
data, including a self-report musculoskeletal movement
clearing screen and MSKI data captured via International
Classification of Disease-10 (ICD) codes in the Military
Health System Management Analysis and Reporting Tool
(MHS MART [M2]). The M2 is a data repository, built from
medical encounter data, that allows researchers to query
MSKI data (among other pathologies) for clinic operations
and research purposes.16 The protocol was exempt from insti-
tutional review board review, as it involved secondary
research for which consent was not required.

Participants

We included active-duty service members (n ¼ 4222) in-
processing to a single military unit located at Fort Liberty,
NC, between December 10, 2020, and March 1, 2022. All
service members in-processing to the unit completed 3 self-
report musculoskeletal movement clearing screens as part
of their unit-directed in-processing.17 Service members who
completed all 3 movement clearing screens were included in
our study. There were no additional inclusion or exclusion
criteria.

Self-Report Movement Clearing Screens
and Demographics

All movement screens were completed en masse during
the military unit’s standard in-processing, and most service
members wore their Operational Camouflage Pattern uniform
boots. A non-medical military unit representative delivered a
standardized script on how to complete the assessments. After
the service members completed each movement screen, they
recorded whether they felt pain on that screen (ie, self-
reported). No operational definition of pain was provided to
the service members (ie, they interpreted pain via their own
personal definitions).
The movement clearing screens consisted of the Shoul-

der Clearing Test, Spinal Extension Test, and Squat-Jump-
Land. The military unit selected the movement screens
based on the available literature and to mimic the func-
tional tasks of an airborne unit.11–13 The Shoulder Clearing
and Spinal Extension Tests were sourced from the FMS.
The military unit adapted the FMS deep squat to the Squat-
Jump-Land to mimic the functional tasks of an airborne
unit.
The Shoulder Clearing Test required service members to

place their palm from one hand on the opposite shoulder
(eg, left palm on right shoulder) and elevate their elbow as
high as possible; this was completed bilaterally (Figure 1A).7

The Spinal Extension Test required service members to
assume a push-up position (prone on the ground) and lift their
chest off the ground until their elbows were straight or
extended while attempting to keep their pelvis flat in contact
with the ground (Figure 1B). The Squat-Jump-Land consisted
of service members assuming a squat position, performing a
maximum vertical jump with no countermovement, and then
landing (Figure 1C). Additionally, at the time of the move-
ment clearing screens, service members self-reported their
height, weight, and if they experienced an MSKI in the year
before the screening that resulted in medical care or persisted
longer than a week.17
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Musculoskeletal Injury Data

Military Health System electronic medical record data
are captured and cataloged in the M2 with ICD-10 codes.
Based on a prior taxonomy, we retrospectively pulled ICD-
10 codes associated with MSKI encounters from the Com-
prehensive Ambulatory Provider Encounter Records in the
M2.18,19 The codes were pulled to identify service members
who sustained MSKIs within 180 days of completing the
movement clearing screens. Each MSKI was classified by
body region: head and neck, upper extremity, spine and
back, torso, lower extremity, and other. Our primary analy-
ses focused on MSKIs across all body regions. Our second-
ary analyses focused only on body region–specific MSKIs
relevant to the movement clearing screen of interest. We
also abstracted age and gender data from the M2.

Data Reduction

Movement clearing screen results were recorded as yes
(pain during movement) or no (no pain during movement)
for each movement clearing screen. Service members were
dichotomized as self-reporting having pain on each individ-
ual movement clearing screen of interest versus no pain on
the movement clearing screen of interest. The Shoulder
Clearing Test was completed bilaterally but reported as a
single outcome (ie, regardless of unilateral or bilateral pain,
the outcome was recorded as yes in our data). Body mass
index was calculated from self-reported height and weight.
Service members were classified as injured if 1 or more

MSKI ICD-10 codes were identified in the M2 regardless
of the number of different ICD-10 codes or the number of
times the same code appeared in the medical record. Service
members for whom an MSKI ICD-10 was not identified within
the medical record during the 180-day follow-up period were
considered uninjured. The first MSKI experienced during

our surveillance period was used in our analyses, regardless
of the body region, for the any body region analysis and
traffic light model analysis. To examine movement clearing
screen pain and body region–specific MSKI risk, we cate-
gorized participants as injured based on the time to their
first MSKI to the body region of interest, not necessarily
their first MSKI overall during the surveillance period. For
example, if a service member experienced a shoulder joint
injury as their second overall MSKI during the surveillance
period, then the shoulder joint injury was used for the
Shoulder Clearing Test body region–specific MSKI analy-
sis. The Shoulder Clearing Test identified upper extremity
MSKI risk (shoulder joint and distal through the fingers);
the Spinal Extension Test identified spine, back, and torso
MSKI risk; and the Squat-Jump-Land identified lower
extremity MSKI risk (hip joint and distal through the toes).
Musculoskeletal injuries included in the head and neck and
other categories were not included in the body region–spe-
cific analyses.
To determine if reporting pain on multiple movement

clearing screens progressively increased the risk for any
MSKI, we developed a traffic light model that combined all
3 movement clearing screens into a single outcome. Service
members were categorized as Green (no pain on any move-
ment clearing screen), Amber (pain on 1 movement clear-
ing screen), Red (pain on 2 movement clearing screens), or
Black (pain on 3 movement clearing screens). The first
MSKI experienced during our surveillance period was used
in our analyses regardless of the affected body region.

Data Analysis

Descriptive statistics were calculated as means and stan-
dard deviations, percentages, and medians as appropriate.
We evaluated each movement screen separately, such that
we did not account for pain experienced during the other

Figure 1. A, Shoulder Clearing Test. B, Spinal Extension Test. C, Squat-Jump-Land.

Journal of Athletic Training 13

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-17 via free access



movement screens, except for our third objective (traffic
light model), in which we examined the effect of pain with
multiple movement screens on MSKI risk. To determine if
self-reported pain during an individual movement clearing
screen was associated with any MSKI, we used unadjusted
and adjusted Cox proportional hazards models. Cox pro-
portional hazards were adjusted by age, gender (male or
female), body mass index, and prior MSKI history (yes or
no). These covariates were chosen as they relate to MSKI
risk and pain.17,20 Similar analyses, including the same
covariates, estimated the association between self-reported
pain on the individual movement clearing screens and rele-
vant body region–specific MSKI risk. Further, similar anal-
yses again were used to determine if the traffic light model,
based on the quantity of pain across all movement clearing
screens, could differentiate service members at risk of sus-
taining any MSKI. We only compared the traffic light
model Amber, Red, and Black cohorts to the Green cohort,
as our reference group. Unadjusted and adjusted hazard
ratios (HRadj) and 95% CIs were calculated for each Cox
proportional hazards model. Our measure of discriminatory
ability for the traffic light model was the C-Index (ie, C-
Statistic, concordance statistic), which can be defined as a
model’s ability to correctly classify participants into spe-
cific groups based on their risk scores (ie, pain on move-
ment screenings in our model).21 The C-Index is like the
area under the curve and is interpreted as weakly generaliz-
able (0.50–0.70), moderately generalizable (0.70—0.85),
and strongly generalizable (0.85–1.00).22,23 The C-Index
was used to determine the ability of our model to discrimi-
nate between service members who do and do not experi-
ence a future MSKI based on the number of movement
screenings for which they report pain. Additionally, for the
traffic light model, the measure of calibration, or accuracy,
was the Integrated Brier Score. The Brier Score is the mean
square difference between the true classes and the predicted
probabilities.24 The Integrated Brier Score is the average
for all the Brier Score values over a specified time inter-
val.25 The score interpretation ranges from 0.00 (perfect
accuracy) to 1.00 (perfect inaccuracy).26,27 For all models,
multicollinearity was evaluated with variance inflation fac-
tor (VIF) calculations; any variable with a VIF . 5 was
removed from the model. All analyses were conducted
using R Studio version 4.4.2. Survival analysis packages

included tidyverse, survival, and survminer, and signifi-
cance for all models was set a priori a � .05.

RESULTS

Demographics

Service members who went on to experience an MSKI
(injured) and those who did not experience an MSKI (unin-
jured) differed in age, body mass index, gender, prior
MSKI history, and pain during the movement clearing
screens (Table 1). Similarly, the Amber, Red, and Black
cohorts differed from the Green cohort in age, body mass
index, gender, prior MSKI history, and pain during the
movement clearing screens, except for the proportion of
females between the Green and Black cohorts (Table 2).
The Amber, Red, and Black cohorts were not compared, as
our survival analyses were in reference to the Green cohort.

Pain During Movement Clearing Screens and Any
Musculoskeletal Injury

Service members who self-reported pain on the Shoulder
Clearing Test (HRadj ¼ 2.11), Spinal Extension Test (HRadj ¼
1.95), or Squat-Jump-Land (HRadj ¼ 2.84) were more likely
(P, .001 for all) to experience any MSKI within 180 days of
in-processing than service members who did not report pain
(Table 3). For all variables across all 3 models, the VIF
ranged from 1.03 to 1.20; therefore, multicollinearity was
considered not to be present.

Pain During Movement Clearing Screens and Body
Region–Specific Musculoskeletal Injury

Service members who self-reported pain on the Shoulder
Clearing Test were more likely (HRadj ¼ 3.28, P , .001) to
experience an upper extremity MSKI than service members
who did not report pain on the Shoulder Clearing Test
(Table 3). Service members who reported pain on the Spi-
nal Extension Test were more likely (HRadj ¼ 2.80, P ,
.001) to experience a spine, back, or torso MSKI than ser-
vice members who did not report pain on the Spinal Exten-
sion Test (Table 3). Service members who reported pain on
the Squat-Jump-Land were more likely (HRadj ¼ 2.07, P ,
.001) to experience a lower extremity MSKI than service
members who did not report pain on the Squat-Jump-Land
(Table 3). For all variables across all 3 models, the VIF

Table 1. Service Member Demographics (Mean 6 SD or No. [%])a

All Service members

(n ¼ 4222)

Uninjured

(n ¼ 2716)

Injured

(n ¼ 1506)

Age, (y) 24.3 6 5.6 23.8 6 5.2 25.1 6 6.3

Body mass index, kg/m2 25.6 6 3.1 25.3 6 3.1 25.6 6 3.2

Gender, No. (% female) 517 (12.2) 253 (9.3) 264 (17.5)

Prior MSKI history, No. (% yes) 671 (15.9) 259 (9.5) 412 (27.4)

Pain on movement clearing screen, No. (% yes) 985 (23.3) 442 (16.3) 543 (36.1)

Pain on Shoulder Clearing Test, No. (% yes) 473 (11.2) 206 (7.6) 267 (17.7)

Pain on Spinal Extension Test, No. (% yes) 414 (9.8) 193 (7.1) 221 (14.7)

Pain on Squat-Jump-Land, No. (% yes) 571 (13.5) 215 (7.9) 356 (23.6)

Abbreviation: MSKI, musculoskeletal injury.
a All (age, body mass index, gender, prior injury history, pain on movement clearing screen, pain on Shoulder Clearing Test, pain on Spinal
Extension Test, pain on Squat-Jump-Land) comparisons between injured and uninjured service members were statistically significant
(P , .05).
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ranged from 1.04 to 1.23; therefore, multicollinearity was
considered not to be present.

Traffic Light Model

The Amber (HRadj ¼ 1.69), Red (HRadj ¼ 2.07), and
Black (HRadj ¼ 2.31) cohorts were more likely (P , .001
for all) to experience any MSKI than the Green cohort
(Table 4). Median survival probability was the longest for
service members categorized as Green (.180.0 days); the
median survival probabilities for the Amber, Red, and
Black cohorts were 174.5, 111.0, and 79.0 days, respec-
tively (Figure 2). The unadjusted and adjusted (ie, when
covarying for age, gender, body mass index, and prior
MSKI history) C-Indices were 0.59 and 0.63, respectively,
indicating the traffic light model had poor discriminatory
ability. However, the unadjusted and adjusted Integrated
Brier Scores were 0.147 and 0.145, respectively, indicating

a moderate level of accuracy. The VIF for all variables
ranged from 1.03 to 1.22; therefore, multicollinearity was
considered not to be present.

DISCUSSION

Service members who self-reported pain on any move-
ment clearing screen were at a greater risk for any MSKI
within 180 days of testing and body region–specific MSKIs
than service members who did not self-report pain. Addi-
tionally, our traffic light model is an expedient method that
can be used by clinicians and non-clinicians (eg, sport
coaches) for identifying service members at greater MSKI
risk, as service members categorized as Amber, Red, or
Black were 1.7 to 2.3 times more likely to sustain an MSKI
than those reporting no pain (Green cohort). However, the
discriminatory ability of the traffic light model was poor
(C-Index ¼ 0.63). Our results agree with prior literature in

Table 2. Traffic Light Model Demographics (Mean 6 SD or No. [%])a

Green Cohort

(n ¼ 3237)b
Amber Cohort

(n ¼ 630)c
Red Cohort

(n ¼ 237)d
Black Cohort

(n ¼ 118)e

Age, y 23.6 6 5.1 25.6 6 6.0 27.2 6 7.0 30.6 6 7.7

Body mass index, kg/m2 25.3 6 3.1 26.1 6 3.1 26.2 6 3.0 26.9 6 3.3

Gender, No. (% female) 355 (11.0) 108 (17.1) 40 (16.9) 14 (11.9)

Prior MSKI history, No. (% yes) 302 (9.3) 216 (34.3) 96 (40.5) 57 (48.3)

Pain on movement clearing screen, No. (% yes) 0 (0.0) 630 (100.0) 237 (100.0) 118 (100.0)

Pain on Shoulder Clearing Test, No. (% yes) 0 (0.0) 214 (34.0) 141 (59.5) 118 (100.0)

Pain on Spinal Extension Test, No. (% yes) 0 (0.0) 137 (21.7) 159 (67.1) 118 (100.0)

Pain on Squat-Jump-Land, No. (% yes) 0 (0.0) 279 (44.3) 174 (73.4) 118 (100.0)

MSKI during surveillance period, No. (% MSKI)f 963 (29.7) 319 (50.6) 148 (62.4) 76 (64.4)

Abbreviation: MSKI, musculoskeletal injury.
a All means and proportions were significantly different (P , .05) between the Green and the Amber, Red, and Black cohorts, except for
the proportion of females between the Green and Black cohorts (P ¼ .999). The Amber, Red, and Black cohorts were not compared, as
our survival analyses were in reference to the Green cohort.

b Green cohort: No pain on movement clearing screens.
c Amber cohort: Reported pain on 1 movement clearing screen.
d Red cohort: Reported pain on 2 movement clearing screens.
e Black cohort: Reported pain on 3 movement clearing screens.
f MSKI during the surveillance period is reported as the No. (%) of service members who experienced an MSKI within 180 days after their
in-processing between December 10, 2020, and March 1, 2022.

Table 3. Adjusted and Unadjusted Hazard Ratios With 95% Confidence Intervals for Self-Reported Pain During Movement Clearing

Screens and Musculoskeletal Injurya

Any Musculoskeletal Injury Body Region–Specific Musculoskeletal Injuryb

Unadjusted Hazard

Ratio (95% CI)

Adjusted Hazard

Ratio (95% CI)

Unadjusted Hazard

Ratio (95% CI)

Adjusted Hazard

Ratio (95% CI)

Pain on Shoulder Clearing Test

No Reference Reference Reference Reference

Yes 2.11 (1.85, 2.41) 1.58 (1.37, 1.82) 3.95 (3.14, 4.96) 3.28 (2.57, 4.19)

Pain on Spinal Extension Test

No Reference Reference Reference Reference

Yes 1.95 (1.69, 2.25) 1.48 (1.28, 1.87) 3.40 (2.80, 4.13) 2.80 (2.26, 3.49)

Pain on Squat-Jump-Land

No Reference Reference Reference Reference

Yes 2.84 (2.52, 3.20) 2.04 (1.79, 2.32) 2.88 (2.50, 3.34) 2.07 (1.76, 2.43)

a P values for all adjusted and unadjusted models were ,.001. For all service members, 11.2%, 9.8%, and 13.5% reported pain on the
Shoulder Clearing Test, Spinal Extension Test, and Squat-Jump-Land, respectively.

b For body region–specific musculoskeletal injury, the Shoulder Clearing Test identified upper extremity MSKI risk (shoulder joint and distal
through the fingers), the Spinal Extension Test identified spine and back and torso MSKI risk, and the Squat-Jump-Land identified lower
extremity MSKI risk (hip joint and distal through the toes).

Journal of Athletic Training 15

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-17 via free access



which authors investigated pain during functional move-
ments and MSKI risk, while adding to the existing litera-
ture on MSKI risk by body region and the traffic light
model.11–13

Pain During Movement Clearing Screens and Any
Musculoskeletal Injury

Our findings agree with prior researchers that found
service members who reported pain during any FMS
movement (eg, in-line lunge, deep squat), not just clear-
ing screens, have a greater risk for future MSKI.11–13

However, what is unique about our work is we only
examined 3 movement clearing screens, which require
limited time and no clinical or technical expertise,
whereas authors of other studies included both func-
tional movement assessments and movement clearing
screens (ie, 7 total movements).11–13 Reducing the num-
ber of movement clearing screens will better enable
health care providers and non–health care providers (eg,
strength and conditioning coaches) to conduct MSKI
risk evaluations en masse and thus improve the feasibil-
ity of MSKI risk assessments. This is primarily because
all MSKI risks assessed in this study were entirely self-
reported. More widespread MSKI risk assessments will
result in the identification of more service members with
higher MSKI risk, for whom MSKI risk mitigation interven-
tions can be developed and implemented, resulting in fewer
MSKIs.

Pain During Movement Clearing Screens and Body
Region–Specific Musculoskeletal Injury

Self-reported pain during a specific movement clearing
screen is a risk factor for relevant body region–specific
MSKIs. Pain may increase the risk for MSKI for a variety
of reasons. First, pain may cause an individual to alter their
movement patterns.28 This may result in aberrant joint and
muscle loading to avoid undue strain and damage to the

bone or soft tissue, both acutely (ie, service members
landing from a jump may favor and overload the contra-
lateral leg) and chronically (ie, service members adopt
movement patterns that abnormally load tissues), increas-
ing MSKI risk.29 Second, pain causes changes in strength
and the rate of force development.30,31 Thus, service
members with pain during movement may have reduced
capacity to produce muscle forces sufficient to attenuate
rapid loading of bones and soft tissues that may increase
MSKI risk.32 Additionally, the relationship between pain
and care-seeking behavior within military contexts is
complex. It is also possible service members who self-
report pain may be more likely to seek care for their
MSKI or are already undergoing treatment and therefore
have a greater number of medical encounters and more
opportunities to disclose their MSKIs.33,34 With the new
knowledge generated from our study, future researchers
should investigate if reducing pain during movement
decreases MSKI risks.

Traffic Light Model

Our most clinically important finding is our traffic light
model can be used as a screening tool to efficiently identify
service members at greater risk of sustaining an MSKI.
Once these service members are identified, more in-depth
assessments can be used to identify more specific MSKI risk
factors and create appropriate, individualized MSKI risk
reduction programs. We observed that, as service members
reported pain on more movement clearing screens, MSKI
risk increased.
It should be noted our traffic light model displayed poor

discriminatory ability; this slightly limits its clinical utility.
However, our traffic light model results are like prior
research, in which authors found reporting pain on multiple
FMS tests progressively increased MSKI risk among US
Army service members.11 The benefit of our traffic light
model is it only included 3 movement clearing screens,

Table 4. Adjusted and Unadjusted Hazard Ratios With 95% Confidence Intervals for the Traffic Light Modela

Unadjusted

Hazard Ratiob 95% CI P Value

Adjusted

Hazard Ratioc 95% CI P Value

Traffic light

Green Reference NA NA Reference NA NA

Amber 2.12 1.87, 2.41 ,.001 1.69 1.48, 1.93 ,.001

Red 2.86 2.40, 3.40 ,.001 2.07 1.73, 2.48 ,.001

Black 3.34 2.64, 4.22 ,.001 2.31 1.81, 2.95 ,.001

Age 1.04 1.03, 1.04 ,.001 1.01 1.00, 1.02 .046

Gender

Female Reference NA NA Reference NA NA

Male 0.56 0.49, 0.64 ,.001 0.58 0.51, 0.66 ,.001

Body mass index 1.05 1.03, 1.07 ,.001 1.03 1.01, 1.05 ,.001

Prior MSKI history

No Reference NA NA Reference NA NA

Yes 2.78 2.49, 3.12 ,.001 2.08 1.84, 2.35 ,.001

Abbreviations: MSKI, musculoskeletal injury; NA, not applicable.
a All factors were significant at the P , .001, except for the adjusted hazard ratio age, which was significant at the P ¼ .046.
b The unadjusted hazard ratios are the univariate relationship between the variable of interest and future MSKI. For example, age alone
had an unadjusted hazard ratio of 1.04 in relation to future MSKI.

c The adjusted hazard ratios are shown for the multivariable model containing the traffic light (ie, pain on movement clearing screens),
age, gender, body mass index, and prior MSKI history. For example, age, after controlling for traffic light, gender, body mass index, and
prior MSKI history, had a hazard ratio of 1.01 in relation to future MSKI.
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while authors of previous studies used the entire FMS bat-
tery (7 total tests); further, our traffic light model was
highly accurate (Integrated Brier Score ¼ 0.145).11 This
makes our model more efficient while still achieving similar
results to prior research. Additionally, MSKI risk is influenced
by multiple factors (eg, biomechanics, prior MSKI, psy-
chological factors), and our model only had 1 risk factor
(pain) while controlling for other risk factors.32,35–37 This
again highlights the traffic light model’s efficiency.
Lastly, our traffic light model was entirely self-report,
meaning it can be administered by anyone, regardless of
their clinical expertise or lack thereof. Thus, while the
traffic light model is not without its limitations, it may
still have clinical utility as an initial tool to help triage
service members into high versus low MSKI risk cohorts.
The high-risk cohort can then undergo additional assess-
ments, as necessary.
For greater context on the traffic light model’s efficiency, the

military unit was able to assess up to 150 service members in
as little as 30 minutes using a larger test battery that included
the movement screens reported here and 16 self-report items
(demographics, general health, and physical fitness).17 Given
our traffic light model only included the movement screens, it
is more efficient than the comprehensive MSKI risk assessment

conducted by the unit and more efficient than conducting the
FMS battery used in previous research.11

Furthermore, our movement clearing screens do not
require any specialized equipment or clinical expertise to
administer. Therefore, our traffic light model can serve as
an easy-to-implement decision support tool for health care
and non–health care providers alike. For example, 86.9%
of surveyed athletic trainers strongly agreed that clinical
prediction rules and diagnostic algorithms would benefit
the profession.38 Multiple medical specialties are involved
in the well-being (prevention and treatment of MSKIs) of
service members, and clinical prediction rules would likely
benefit them all.39 Thus, the traffic light model may aid cli-
nicians in identifying service members who should undergo
additional MSKI risk evaluations. As observed in our
study, the Black cohort had the highest risk for future
MSKI, and the number of service members within this
cohort is small enough (2.8% of our sample population) to
connect with health care providers, appropriate resources,
or both that can conduct comprehensive musculoskeletal
assessments and provide individualized programs for these
high-risk service members to help mitigate risk. Addition-
ally, the Amber and Red cohorts are small enough that,
given enough resources, they could also benefit from

Figure 2. Traffic light model Kaplan-Meier curves. Green is the reference group. Dashed lines represent median survival probability.
The median survival probabilities for the Amber, Red, and Black cohorts were 174.5, 111.0, and 79.0 days, respectively.
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targeted risk mitigation programs. However, the high-
risk Black cohort should be a priority based on our
results. High-throughput, low-burden (time and money),
and clinically meaningful MSKI risk assessments are
essential first steps to delivering MSKI risk reduction
interventions to those service members at the greatest
risk of MSKI.

Other Contributors to Musculoskeletal Injuries

We identified potential MSKI risk factors beyond pain
during the movement clearing screens. Older age and
greater body mass index were both statistically significant
contributors to MSKI risk within our traffic light model;
however, these factors both had small adjusted -HRs lim-
iting their clinical significance. Additionally, males had a
lower MSKI risk than females, which agrees with prior lit-
erature among service members.40 Finally, a history of
MSKI was a significant MSKI risk factor. A prior MSKI
history is one of the most observed MSKI risk factors
among service members.41 It is possible that MSKI history
is part of the reason service members in our cohort
reported pain during a movement clearing screen. How-
ever, our VIFs were all less than 5, indicating pain and
prior MSKI did not violate the multicollinearity rules. The
VIF results strengthen our findings that pain is an impor-
tant risk factor for MSKI independent of prior MSKI
history.

Limitations

Our study is not without limitations. First, we specifi-
cally examined a single US Army airborne unit. Service
members in our cohort had an array of military occupa-
tions, broadly categorized as services and supplies, mainte-
nance and engineering, support and administration, health
care, communications and intelligence, and tactical opera-
tions (ie, combat arms). Comparable military occupations
exist across US Army units; however, our population was
unique in that all service members were also paratroopers
in addition to the above occupations. Our findings are
likely generalizable to other military populations but
should be validated in those populations. Second, pain was
self-reported, and service members may not have disclosed
if they experienced pain during a movement clearing
screen. Thus, some service members who experienced pain
may have been classified as pain free, yet we still observed
a higher MSKI risk in individuals who did report pain.
Along with underreporting pain, service members may
have underreported their previous and future MSKIs. Ser-
vice members do not always seek care for the MSKIs;
therefore, MSKIs occurring within our 180-day surveil-
lance period may be an underestimate. Finally, we only
analyzed pain during movement, which is but 1 aspect of
MSKI risk. Comprehensive MSKI risk assessments are
required to holistically evaluate individual MSKI risk;
regardless, we were still able to identify potential MSKI
risk factors that can be addressed through targeted MSKI
risk mitigation interventions.

CONCLUSIONS

Service members reporting pain on movement clearing
screens are at a greater risk of MSKI than those not reporting

pain. Furthermore, individual movement clearing screens
were able to differentiate between service members with
high versus normal MSKI risk for each body region–specific
screen; this demonstrates the need to include a variety of
movement clearing screens in comprehensive MSKI risk
assessment paradigms. Finally, a progressive increase in
MSKI risk occurs as service members report pain on more
movement clearing screens. A traffic light model, even with
its low discriminative ability, based on pain reported during
movement clearing screens can be employed as a decision
support tool by anyone to screen for MSKI risk, as it
requires minimal training and no clinical or technical exper-
tise. Future researchers should investigate if pain reduction
strategies and other injury prevention programs can reduce
the risk of MSKIs among service members categorized as
high risk.
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