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Decreased Hip Flexion during Spike Jump-Landings after Fatigue is Predictive of Patellar

Tendinopathy in Volleyball

Context: Patellar tendinopathy (PT) is a highly prevalent overuse injury in volleyball. However,
little is known if and how the risk for developing PT is increased through fatigue-induced alterations
during repetitive jump-landing activities in volleyball.

Objective: The purpose of this study was to explore fatigue-induced risk factors for PT during a
spike jump-landing task in volleyball.

Design: Prospective cohort study.

Setting: 3D biomechanical laboratory screening. \

Patients or Other Participants: Seventy-nine adult, malgyvolgyball rs.

Main Outcome Measure(s): At baseline (pre-seasg#, 3D, N kinematics and Kinetics were

collected while performing a spike jump before and a a volleyball-specific fatigue protocol.

Throughout the season, players were followed @occurrence of PT and survival analysis with
ifi

competing risks was performed to identify si dictors for the development of PT (p < 0.05).
layers developed PT (13%). Players with significantly

Results: During follow-up, ofx
less hip flexion during the horj difg/push-off phase of the spike jump after fatigue were at

higher risk for develggifit =0.898; 95% CI 0.826 to 0.977; p = 0.023) as well as players with

a significantly more @longated fectus femoris muscle-tendon unit (HR = 3.258; 95% CI 1.136 to 9.343;
p = 0.032).

Conclusions: Despite the low (injured) sample size of this study, preliminary research findings
indicate less hip flexion and more elongated rectus femoris muscle-tendon units during landing after
fatigue as potential risk factors for developing PT. Future prevention programs for PT may wish to
focus on hip-specific exercises and technique modifications (e.g., more hip flexion during landing)

under fatigued circumstances.
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29 Key Points:

30 (1) The accuracy of risk factor screenings can be enhanced through screening fatigue-induced
31 movement alterations during jump-landing.

32 (2) Less hip flexion during landing after fatigue increases the risk for developing patellar

33 tendinopathy and may be associated with rectus femoris contractions from a more elongated
34 configuration.

35  (3) Prevention programs for patellar tendinopathy may wish to focus i ific exercises and
36 technique modifications (e.g., more hip flexion during Ian@ng) defTatig#led circumstances.
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Patellar tendinopathy (PT) is a highly prevalent overuse injury in sports with repetitive bouts of
jump-landing tasks. Volleyball players are mostly affected, with prevalence rates near 50% and
incidence rates up to 30 injuries/100 players/season.™? PT refers to persistent patellar tendon pain and
loss of function related to mechanical loading.® This pathological condition often affects athletes’
sports participation and even may lead to termination of their athletic career.* Identifying the risk
factors for PT is necessary before developing effective prevention programs.>® The aetiology of PT is
multifactorial in nature and there is currently a lack of strong evidence concerning extrinsic (e.g.,

activity volume) and intrinsic risk factors (e.g., body weight, jump performance).>®

Repetitive patellar tendon loading is considered to be a modifiable e ic risk factor for PT."®

Accumulation of high eccentric (or even concentric) tendon loaffin ught to produce

8

microtraumas in the tendon, which can eventually lead to intré&ten8ious pathological changes.”
X

The magnitude of the patellar tendon loads, and ho accommodate to them, can be

accurately quantified via biomechanics.? This illustrates t eed to investigate biomechanical risk

factors for PT during dynamic tasks such as ju ings. Evaluation of the entire kinematic chain
appears to be important as both local (kne, cal (proximal or distal to the knee) kinematic
alterations may affect patellar te ingy’ At the local level, more knee flexion during landing

can increase both tensile and

oads onto the tendon.” Regarding the non-local factors,
less ankle dorsiflexig in less load absorption, potentially resulting in more loads being
transferred to the pat® 2 On the other hand, more trunk and/or hip flexion during landing can
be associated with reduced patellar tendon loading due to a closer positioning of the ground reaction
force vector with respect to the knee joint."* Besides that, kinematic changes during landing can alter
contributions of the different muscle bellies of the quadriceps (i.e., rectus femoris and vastus
intermedius/lateralis/medialis), of which the rectus femoris has already been associated with the
development and perpetuation of PT symptoms.'? Although the exact underlying mechanism for this
remains speculative until now, less hip flexion during jump-landing can, for example, lead to rectus

femoris contractions from a more elongated configuration, possibly altering tension and/or loading

into the patellar tendon.
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Previous prospective studies were unable to determine clear local and/or non-local jump-landing
related biomechanical risk factors predictive for PT.2®"® To enhance the accuracy of risk factor
screenings, functional fatigue protocols have already been proven to be successful, increasing the
ability to identify biomechanical risk factors during jump-landings in female physical education
students.* The concept of fatigue is an evolving field in literature, with complex interactions between
physical and psychological types of fatigue potentially affecting neuromuscular control, making risk
factors in (pre-season) screenings more apparent.***> Hence, it seems crucial to consider fatigue,
especially since fatigue has also been shown to increase the risk for knee injuries by altering both local

and non-local kinematics during jump-landing tasks."“** Likewise, healghy. basketball, soccer and

volleyball players employ kinematic strategies during landing when fatigeed less knee flexion
%e) that may lead to a

and more trunk flexion after functional fatigue protocols compamﬁé
h

reduction of patellar tendon loading.’®*" The question théf arise r players are more prone to
develop PT if they do not show local and/or non-local ensatory kinematic strategies to reduce

patellar tendon loads during landing when fatigue

The primary purpose of this stgdy e whether changes in patellar tendon loading

during volleyball’s most challengiag ] ivity, i.e., the spike jump®’, induced by a volleyball-
specific fatigue protocol, ma asepthe risk of developing PT. As a secondary purpose, we
explored if sagittal p knee, and/or ankle kinematic changes after fatigue may contribute
to an increased PT i t was hypothesized that increased patellar tendon loads when fatigued,

accompanied by kinematic alterations like more knee flexion and/or less trunk-hip-ankle (dorsi-
)flexion, may elevate the risk of PT. For further exploration, we also observed whether fatigue-induced
changes in quadriceps muscle-tendon unit (MTU) lengths, particularly when contractions occur from a

more elongated configuration, may contribute to PT injury risk.

Methods
1. Study Design

This prospective cohort study started with pre-season screenings (July-September 2021) including

3D full-body biomechanics when performing spike jumps before and after a volleyball-specific fatigue

4
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protocol. Thereafter, participants were followed for the occurrence of PT during one consecutive
volleyball season (35 weeks). This study was registered at ClinicalTrials.gov (ID = X) and approved

by the Ethical Committee of the Ghent University Hospital (ethical approval number = X).
2. Participants

For inclusion, participants had to meet the following criteria: (1) male competitive volleyball
players (from all competition levels) since PT is higher prevalent in this cohort’, (2) at least 18 years
old, and (3) at least 6 months injury-free. One-hundred and fifty volleyball players (from 13 clubs)
were screened for inclusion, of which 86 met the inclusion criteria. Since PT incidence is 30
injuries/100 players/season?, 26 PT injuries are expected in this sample, a: ing to be sufficient to

perform an explorative Cox regression analysis. Written informed s obtained from each
. (

participant prior to inclusion.
3. Procedures
The pre-season screening started with a 10- arm-up consisting of familiarization with the
fatigue protocol without inducing any no € ue. Thereafter, kinematics and kinetics were
L 2
collected when performing spike ‘\& nd after the fatigue protocol.
Fatigue was induced by aiive-Clscult version of the high-intensity, intermittent exercise protocol

(HIIP-5).® The ci e WIIP-5 include exercises mimicking volleyball activities (i.e.,

directional changes, j ints and side-steps) that are executed at the highest possible movement
speed. These circuits are interspersed with passive rest periods of 30 seconds. The HIIP-5 induces
acute and long-lasting volleyball-specific fatigue responses up to 30 minutes after HIIP-5, assuring a

sufficiently large time window within which the post-fatigue biomechanical assessments were

completed (average time frame to complete the assessments post-HIIP-5 was 4.0 minutes).™®

Spike jump-landing biomechanics were collected before and after the HIIP-5. The spike jump
incorporates an initial horizontal landing/push-off phase, which includes a stretch-shortening cycle and
induces higher patellar tendon loads compared to jumps with a predominantly vertical landing

component.'®*” During the spike jump, participants ran from a self-selected distance towards a

5
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volleyball net. Then, they landed with both feet separately on two force plates prior to pushing-off
vertically (referred to as the horizontal landing/push-off phase). The force plates were located in front
of the net, which was attached at a standardized height of 2.43 m. Jump height effort was standardized
by asking to swing with the dominant hand forward to an imaginary ball positioned just above the net.
Participants were asked to perform five valid spike jumps both before and after the HIIP-5. Trials were
discarded if (1) one foot did not fully touch the force plate, (2) both feet did not touch the separate
force plates, or (3) participants showed an adaptation of their preferred stride lengths in an attempt to

target the force plates.

4. Data Collection and Analysis \
To monitor exertion induced by the HIIP-5, the following par @e registered: (1) heart
&

rate using a Polar system (Polar, Electro), (2) rate of per 'vex n for breathlessness (RPE-B)
and legs (RPE-L) on a 20-point Borg scale, (3) -8Vrun-tiMe using infrared timing gates

(Microgate), and (4) spike jump height derived from the pelviSikinematic data.’

Kinematic data were collected with a a gpto-electronic system (Oqus 3+, Qualysis, 300

Hz) and were synchronized with oﬁr\' rce data gathered by two force plates embedded in
the floor (AMTI, 1200 Hz). 0 ctive markers were placed on the skin according to the

|l7

Liverpool John Moore echanical model.”" Kinematic and force data were processed

in Qualisys (Qualis inager, Qualisys) and subsequently in Visual 3D software (Visual 3D
v5, C-motion). Kinematic“and force data were filtered using a fourth order Butterworth and critically
damped low-pass filter at 20 Hz, respectively. Euler rotations (X-Y-Z) were used to calculate 3D full-
body joint kinematics and Kinetics. Since the spike jump is mainly a sagittal plane motion and patellar
tendon loading is based on sagittal plane metrics, only sagittal plane data were utilized in this study.
We also focused solely on the participants’ leading leg to perform the spike jump due to higher
patellar tendon loads in this leg.'” The horizontal landing/push-off phase was defined as the period

from initial contact to take-off, which was determined using the vertical component of the ground

reaction force with a threshold set at 25 N.
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Patellar tendon loading (peak force) was computed by dividing the net knee joint moment
(normalized for body mass) by the patellar tendon moment arm, estimated as a function of the knee
joint angle (Appendix 1)." Sagittal plane pelvis-trunk, hip, knee, and ankle kinematics were extracted
as secondary parameters. For further exploration, the lengths of the different parts of the quadriceps
MTU (rectus femoris and vastus intermedius/lateralis/medialis) were also computed since the amount
of produced muscle-tendon force heavily depends on its length.”’ These lengths were estimated as a
function of known hip and/or knee joint angles, which normalizes for thigh length (Appendix 1).2* For

the secondary and exploratory variables, discrete values were extracted at initial contact, peak joint

angle/peak MTU length, peak knee flexion and take-off during horiz landing/push-off. The
averages of 5 trials were determined for every time point for pre-fati ), post-fatigue (at
least 30 seconds after HIIP-5), and their corresponding norm@ze culated (((Post — Pre) /
Pre) x 100).

5. Injury Registration and Diagnostic Criteria

Injury data were collected during follo ing a weekly and 3-montly retrospective

questionnaire in the online platfagms 4Rane Sports® and Research Electronic Data Capture

(REDCap)®, respectively. When p s Started to report patellar tendon complaints, they were

contacted by phone to obtaingfiore rmation concerning the nature of the injury. Moreover, these

participants were a in the ‘Victorian Institute of Sport Assessment Patellar tendinopathy

questionnaire’ (VISA- evaluates symptom severity, knee function and ability to play.? To be
included in the PT experimental group, participants had to meet the following criteria: (1) patellar
tendon pain at the leading leg, and (2) loss of function, confirmed by a VISA-P score <80 or a sports
stop >1 training/match due to patellar tendon pain. The total number of missed sessions due to these
complaints was recorded to quantify the injury's impact on sports participation. Clinical differential
diagnosis with other types of anterior knee pain was based on pain localization, with PT presenting as
localized proximal patellar tendon pain®, while other types of anterior knee pain such as patellofemoral

pain syndrome (PFPS) are characterized by more diffuse pain.”® Presence of ultrasonographic

abnormalities (e.g., tendon thickening, swelling, hypoechogenicity, neovascularisation), taken from a
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physician in the clinical setting, was additionally documented if available.*” PT complaints at the
trailing leg were also registered and these participants were excluded from the analysis due to
uncertainty concerning the effect of contralateral jump-landing patterns on PT injury risk. Other (self-
reported) lower quadrant (i.e., low back and lower extremity) injuries were registered and included as
competing risks, as these could either preclude the occurrence of the injury of interest (i.e., PT at the
leading leg) or fundamentally alter its likelihood, for example by leading to sports discontinuation.?*

Throughout follow-up, participants were regularly contacted by phone to verify compliance with the

injury registration method.

6. Exposure Time

The average amount of weekly volleyball participation (traini
ar\ at risk (number of hours of
dy untfl the occurrence of the injury at

interest (PT) or any other lower quadrant injury or until study@mding/drop-out for participants who did

match) was registered

during follow-up in Panega Sports® and REDCap®. Aft

volleyball participation) was calculated from the start 0

not develop a lower quadrant injury.

7. Statistical Analysis ¢

Statistical analysis was pe, ith IBM SPSS (version 28) and R (version 4.2.1) statistics.

First, descriptive stati formed to check for potential confounders (demographics, history

of patellar tendon gyand indicators of exertion) (Table 1). Then, survival analysis with
competing risks was applied to explore fatigue-induced biomechanical predictors for the development
of PT. Survival analysis was used since it has the advantage of taking into account the individual
amount of sports participation until injury or end of follow-up.** Lower quadrant injuries other than
PT were included in the analysis as competing risks.? The assumptions of proportionality and linearity
of the hazards were investigated by means of log-minus-log plots against time and the Schoenfeld
residual global test. Only unadjusted univariate Cox regression analyses were performed due to the

explorative nature of this study. For all biomechanical variables, p-values were determined for the

normalized A-value to determine significant fatigue-induced predictors for PT (Table 2). In order to
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better interpret the effect of fatigue on these predictors, p-values were also determined for pre-fatigue
and post-fatigue results (Appendix 2-3). Overall, the level of significance was set at o = 0.05. Finally,
thresholds for significant fatigue-induced predictors that may precipitate PT were defined with
receiver operating characteristic (ROC) curve analysis using MedCalc software® (www.medcalc.org)

(Table 3).*

Results

During follow-up, four players did not register any exposure time and three players developed PT
complaints at the trailing leg, which excluded them from the statistical sis. Therefore, a total
number of 79 players were included in the analysis. Of them, 10 playergsieve PT at the leading
leg during follow-up (13%). Four players discontinued trainigq/ sessiogfts (ranging from 1 to 7
sessions), while 6 players had no sports stop due to thedfjury. rt@el VISA-P scores at symptom
onset ranged from 57 to 79 points out of 100, with the from pre-season screening to symptom

which active signs of inflammation (e.g., i S

onset varying between 3.9 and 30.3 weeks. Ultra aphy was conducted in two players with PT in
ing or neovascularization) were documented.

The control group consisted of e players while 34 players developed competing risks

(Figure 1). Body mass index confounding variable that was significantly different

between the PT and cg with higher values for the PT group (Table 1). The PT injury rate

was 0.7 events per 100 volleyball sports participation.

The Cox regression analysis revealed that patellar tendon loading was not a significant fatigue-
induced predictor for PT. For the secondary/exploratory variables, hip flexion (at initial contact and at
peak hip flexion) and rectus femoris MTU length (at peak knee flexion) were significant fatigue-
induced predictors for PT. The hazard for developing PT increased approximately 1.1 times if hip
flexion decreased by 1% post-fatigue compared to pre-fatigue. Moreover, the hazard for developing
PT increased 3.3 times if rectus femoris MTU length increased by 1% post-fatigue compared to pre-
fatigue (Table 2). To further explore the contraction dynamics of the rectus femoris MTU, the force-

length profile of rectus femoris MTU was plotted during the entire horizontal landing/push-off phase
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(Figure 2). Although the differences were small and there was considerable overlap in variability
between the profiles, players with PT tended to show a greater increase in MTU length under fatigue
compared to controls, which is reflected in a right shift of the profile with more elongation for
‘similar’ forces during almost entire horizontal landing/push-off. All other secondary/exploratory
variables did not significantly alter the risk for developing PT (Table 2). Thresholds were only
determined for the hip flexion angle, and revealed cut-off values of >5.9° and >3.5° decrease in hip

flexion after fatigue at initial contact and peak angle, respectively (Table 3).
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S pdominals (n = 1)
3 dductors (n = 2)
s Hamstrings (n = 1)
S *  Quadriceps (n=2)
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Figure 1. Flow Diagram of Participant Selection Process in the Study.

11

$S900E 93l) BIA /1-90-GZ0Z 1e /woo Aloyoeignd:poid-swiid yiewlayem-jpd-awiid;/:sdiy woly papeojumoq



256  Table 1. Potential Confounders for Patellar Tendinopathy Injury Risk.

257
Variables Control PT p- Hedge’s g
(n=69) (n=10) value* | effect size
Demographics
Age (yrs.) 23.35+5.05 23.00 £4.37 0.837 0.069
Weight (kg) 79.74 £11.16 84.88 £ 14.21 0.192 0.441
Height (m) 1.86 + 0.07 1.83£0.05 0.236 0.400
Body mass index (kg/m?) 23.10 £ 2.86 25.30 = 3.56 0.031 0.739
Volleyball experience (yrs.) 12.96 £5.67 11.40 £7.07 0.435 0.263
Volleyball participation per week (h) 7.03+2.82 6.50 = 1.58 0.565 0.194
Elite competition level (%) 5.8 0.0 0.435 -
Setter, middle, outside hitter, libero (%) 15.9, 26.1, 43.5,15.,5 | 0.0, 30.0, 60.0, 10.0 0.514 -
History of previous patellar tendon complaints (>6 months ago)
Prevalence (%) 23.9 0.787 -
Duration (yrs.) 3.68 +4.95 0.468 0.555
Indicators of exertion
Heart rate at HIIP-5 ending (% of theoretical maximum) 95.47x5.17 0.381 0.295
RPE-B at HIIP-5 ending (6-20) 8.10+1.73 0.404 0.281
RPE-L at HIIP-5 ending (6-20) 5.30 + 3.68 0.660 0.149
Run-time during HIIP-5 (min) 5.85+0.42 0.289 0.572
Spike jump height, A post- vs pre-fatigue (cm) -4.42 £2.77 0.254 0.385

258

259 The control group consisted of 35 injury-free players and 34 players with cog

260 are highlighted in bold. * Student t tests or one-way ANOVAs were used for

\\(\

A

ariables, Chi-Square tests for binary variables.

. Values are expressed as mean + SD (if possible). Significant variables

12
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261  Table 2. Fatigue-Induced Biomechanical Predictors for Patellar Tendinopathy.

Variables Control PT p-value* Hazard ratio with Hedge’s g
(n=69) (n=10) 95% ClI effect size
Primary outcome variable
Patellar tendon loading, peak (%), N (<) / 7 (+) -2.98 + 7.86 0.74 +£5.81 0.115 1.080 (0.984-1.186) 0.482

262

X
‘\K@
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Secondary/exploratory outcome variables
Pelvis-trunk flexion (%), N () / 7 (+)
Initial contact -19.33 £ 113.40 16.48 £ 49.64 0.089 1.015 (1.000-1.030) 0.329
Peak pelvis-trunk flexion 11.68 £ 72.09 23.52 £ 48.66 0.483 1.003 (0.996-1.009) 0.168
Peak knee flexion -64.76 £ 806.29 | 274.99 +793.12 0.185 1.001 (1.000-1.001) 0.418
Take-off 33.78 £161.10 9.83 £ 35.80 0.823 0.999 (0.992-1.007) 0.156
Hip flexion (%), N (-) / 2 (+)
Initial contact -7.65£6.80 -16.43 £13.21 0.006 0.922 (0.874-0.972) 1.110
Peak hip flexion -4.14 +4.99 -7.85+7.65 0.023 0.898 (0.826-0.977) 0.685
Peak knee flexion -4.71+7.86 -6.91+11.33 0.218 0.957 (0.892-1.027) 0.261
Take-off -59.43 + 265.66 | -127.75 + 304.33 0.731 1.000 (0.998-1.001) 0.250
Knee flexion (%), N (-) / 7 (+)
Initial contact -16.18 +12.78 -20.90 + 8.63 0.295 0.976 (0.933-1.021) 0.377
Peak / Peak knee flexion -3.63£3.35 -2.38 £ 2.52 0.337 1.130 (0.877-1.455) 0.378
Take-off 11.25 £ 64.96 1.23+£23.27 0.860 1.002 (0.985-1.018) 0.161
Ankle dorsiflexion (%), N (-) / 7 (+)
Initial contact -1.16 £3.12 -0.37+2.61 0.38 1.090 (0.899-1.323) 0.254
Peak ankle dorsiflexion -2.02+£2.48 -0.56 + 2.68 .173 (0.910-1.513) 0.578
Peak knee flexion -2.14 £ 2.47 -0.63 £ 2.52 .19 .168 (0.928-1.471) 0.603
Take-off -2.06 £5.88 -1.99 £ 7.69 1.018 (0.922-1.125) 0.012
Rectus femoris MTU length (%6), N (-) / 72 (+)
Initial contact -0.18 + 0.55 333 1.557 (0.660-3.672) 0.376
Peak length -0.09£0.53 0.110 2.443 (0.881-6.778) 0.599
Peak knee flexion -0.18 + 0.57 0.032 3.258 (1.136-9.343) 0.657
Take-off 0.09 £ 0.54 0.104 2.683 (0.903-7.968) 0.454
Vastus intermedius MTU length (%), N (-) / 7 (+)
Initial contact -2.21+1.76 0.158 0.771 (0.535-1.110) 0.446
Peak length -0.53 + . 0.255 2.766 (0.454-16.868) 0.403
Peak knee flexion -0.53 .33+0.34 0.253 2.787 (0.454-17.108) 0.406
Take-off -0.25+1.41 0.105 1.554 (0.917-2.633) 0.233
Vastus lateralis MTU length (%), N (-) / 7 (+)
Initial contact -2.61+1.24 0.168 0.750 (0.497-1.131) 0.441
Peak length -0.15+0.17 0.168 10.177 (0.287-360.742) 0.422
Peak knee flexion -0.15+0.17 0.157 11.170 (0.294-423.941) 0.424
Take-off -0.10£1.39 0.22£1.26 0.108 1.624 (0.904-2.916) 0.227
Vastus medialis MTU length (%), v
Initial contact -1.75+1.39 -2.36 £ 1.12 0.164 0.724 (0.458-1.144) 0.443
Peak length -0.28 £0.30 -0.15+0.17 0.179 9.809 (0.277-347.103) 0.421
Peak knee flexion -0.28 £0.30 -0.15+0.17 0.170 10.529 (0.283-391.700) 0.424
Take-off -0.09£1.24 0.20+£1.12 0.107 1.730 (0.894-3.347) 0.230
263
264 The control group consisted of 35 injury-free players and 34 players with competing risks. Normalized A-values (%) are expressed as mean + SD. Significant
265 predictors are highlighted in bold. * Unadjusted univariate Cox regression with competing risks.
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266  Table 3. Cut-Off Values for Fatigue-Induced, Significant Predictors for Patellar Tendinopathy.
267
Fatigue-induced e o Sensitivity with 95% | Specificity with 95% _
predictors Cut-off (*) Cl (%) Cl (%) LR+ LR
Less hip flexion at initial >59 80.0 (44.4-97.5) 69.6 (57.3-80.1) 2.6 0.3
contact
Less peak hip flexion >3.5 80.0 (44.4-97.5) 62.3 (49.8-73.7) 21 03

268
269

LR + = positive likelihood ratio, LR - = negative likelihood ratio.

AN

>

15

$S900E 93l) BIA /1-90-GZ0Z 1e /woo Aloyoeignd:poid-swiid yiewlayem-jpd-awiid;/:sdiy woly papeojumoq



294

295
296

10.0
8.0
=}
=2
%3
= 6.0
=
=l
=]
=
1) 40
E
-
o
o 2.0
=
2
S
k=] 0.0
=
2
k]
E -20
©
[-w
-40
10.0
80
=
'S 6.0
=
=
=
2
" 40
a
E
=]
)
§ 2.0
£
S
o 0.0
[ ==
z
k)
T 20
(]
=
-40

Control

T T T
1.05 110 115 120
Rectus femoris muscle-tendon unit length (x times thigh length)
Patellar tendinopathy *
105 115 120 125

Rectus femaoris muscle-tendon unit length (x times thigh length)

Figure 2. Force-Length Relationship Before and After Fatigue.

Trajectories are presented as mean and standard deviation clouds. Initial contact, peak knee flexion and take-off are indicated as IC, PKF and TO, respectively.

Pre-fatigue and post-fatigue are indicated in grey and red, respectively. The arrows indicate the direction of time.
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Discussion

1. Synthesis of the Results

This is the first study that explored fatigue-induced biomechanical risk factors for PT when
performing a spike jump-landing task in a small number of male volleyball players. Contrary to what
we expected, changes to patellar tendon loading with fatigue did not increase the risk for PT.
Nevertheless, we found that players with less hip flexion after fatigue were at higher risk for

developing PT and consequently found that an elongated rectus femoris MTU also increased the risk.

Fatigue-induced alterations to patellar tendon loading were not predictive for PT in this study. It

is currently unclear whether this is a true observation, or whether this h een influenced by
other factors (e.g., calculation method, low sample size, @mp sksgy compensations in the

kinematic chain). As such, patellar tendon loading calc sed on sagittal plane knee

kinematics and kinetics solely, potentially neglecting ional rotational forces or muscular co-
contractions.”®? Moreover, a closer look at the | patellar tendon loading values showed that
fatigue decreased patellar tendon loads in theaCORftol gFoups, while these loads did not reduce in the
PT experimental group (Appendi obServations are in line with our study hypothesis but

may not have proved significant sample size or due the large number of competing risks

in this study. Indeed tella® tendon loads were observed in the competing risk group

compared to the inj p, which may have increased the averaged patellar tendon loading for

the total control group (Appendix 4). Future studies should again consider examining fatigue-induced
patellar tendon loading alterations, possibly calculated with advanced biomechanical models, in larger

sample sizes.

Fatigue-induced less hip flexion during landing increased the risk for developing PT. Previous
research also found that less hip flexion is associated with current symptoms of PT and can even
predict its presence and severity.’>* Landing with less hip flexion is suggested to increase tensile
loads acting on the patellar tendon due to a posterior location of the body’s centre of mass.”” However,

patellar tendon loading was not predictive for PT in this study. This might be explained by the fact that
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342

343

344

345

346

347

348

349

more pelvis-trunk flexion was also found both before and after fatigue in the PT group (Appendix 2-
3), which could negate the posterior location of the centre of mass.* In fact, more pelvis-trunk flexion
during landing has been shown to re-shift the body’s centre of mass and resultant ground reaction
force vector more anteriorly relative to the knee joint, potentially reducing external knee joint
moments and subsequent patellar tendon loading.™* This proximal compensation strategy appeared to
not fully eliminate the risk of developing PT, as less hip flexion (with similar knee flexion angles)
during landing may have proximally elongated the only bi-articular MTU of the quadriceps, that is the

rectus femoris, and this was also found a predictor for PT in this study.

Contractions of the rectus femoris MTU from a more elongated iguration after fatigue

increased the risk for developing PT. This is a clinically relevant findi%& een stated that the
ft a

majority of the patellar tendon fibres originate from the centra®fib driceps tendon, that is,

Ne patella.’? Up to this day, the

risk remains very much hypothetical.

from the rectus femoris, which extend over the anterigf surf
impact of such suboptimal contraction dynamics on PT in
Two hypotheses are explored here, which are ba@ the assumption that the test conditions in this
study were representative of match ’and to tions.'® Hypothesis 1 assumes that the rectus
femoris contractile (muscle fibreSYjantfelaStic elements (tendon and aponeurosis) act as one rigid
entity.*> This implies that le anges to the entire rectus femoris MTU may also increase

elongation (strain) at@hlar tendon up to values near its peak length. High levels of tendon

strain are associated opathological deterioration of the collagenous network due to the
accumulation of micro-trauma and these changes typically occur at the proximal patellar tendon
region.” Confirming this hypothesis, rectus femoris MTU length at peak knee flexion was very close to
its peak length (Appendix 2-3), suggesting that this could also be the case for the patellar tendon. As
an argument against this hypothesis, increased knee flexion after fatigue was not found to be
predictive for PT, given that the amount of knee flexion has previously been associated with the
amount of patellar tendon strain.'® Moreover, relatively small differences in MTU length changes were

observed between the injured and control group in the present study (Table 2). Hypothesis 2 assumes

that, to optimally store and return elastic strain energy, elastic elements should not act too stiff, nor too
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371
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compliant relative to the force capacity of the contractile element, also called as MTU tuning.”® Such
imbalance between muscle force capacity and tendon stiffness has already been suggested to increase
tendon strain in the proximal patellar tendon region.” It is then hypothesized that the observed rectus
femoris MTU lengthening may impede optimal MTU tuning. To give more insight into this matter, we
exploratively plotted the joint work contribution relative to the overall joint work before vs. after
fatigue for the injured and control group (Appendix 5). During landing, no meaningful differences in
joint work distribution with fatigue were observed between both groups. However, during push-off,

players with PT demonstrated a 5% relatively greater decrease in hip joint work and a 4% relatively

greater increase in knee joint work after fatigue compared to controls. This disproportionate shift in
energy distribution between the hip and knee joint during push-off re hanges in elastic
energy storage and release of the rectus femoris MTU. Morg hip.@e ing the initial landing

phase might, therefore, bring the gluteal musculature j#”a moreyoptignal configuration that would

consequently allow for better energy release at the level o hip. This may substantially decrease the

demands of the rectus femoris MTU at the leve e knee during push-off. Future studies should
explore such hypotheses to provide more d@asigR&int@”how fatigue-induced suboptimal contraction
dynamics of the rectus femoris M * ease'PT injury risk.

Although knee flexion di e the risk for PT in this study, both hip and knee motion

after fatigue still seej consider when determining fatigue-induced PT injury risk due to

the bi-articular funct aifectus femoris. We assumed that decreased hip flexion and (to a lesser
extent) increased knee flexion after fatigue may increase rectus femoris MTU lengthening and
subsequent PT injury risk. In an attempt to develop PT injury risk profiles, we divided players into
four quadrants with colour codes (green - yellow - orange -> red) corresponding to increased injury
risk based on their changes in both hip and knee flexion after fatigue (Figure 3). Decreases in hip
flexion were considered more decisive for developing PT than increases in knee flexion as these better
predicted rectus femoris MTU length increases (hip: r = -0.48, knee: r = 0.39). We also indicated the

threshold for peak hip flexion decreases of >3.5° that may precipitate PT with a red line. To confirm

the utility of this risk profiling, we indicated those players that developed PT throughout study follow-
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381

382

383

384

385

386

387
388
389
390

up (red dots). As expected, the majority of players with PT were situated in the orange and red
quadrants, and above the threshold of >3.5° peak hip flexion decrease. Nine players with PT decreased
hip flexion, and two of them even increased knee flexion after fatigue, which may elongate the rectus
femoris MTU both proximally and distally. One player that developed PT, however, was labelled as
biomechanically ‘safe’ as he was situated in the green quadrant. This player may have been more at
risk due to other, non-biomechanical factors (i.e., high body mass, history of patellar tendon
complaints).®?® Due to the multifactorial nature of PT, future prospective studies are needed to confirm

the predictive value of biomechanical markers in interaction with other markers of injury for PT on

multiple large cohorts.”® \
200 * & E ,

15.0 [ ]

0.0

Fatigue-induced changes to peak hip flexion (degrees), increase (-] /decrease [+) after fatigue

L]
50
L]
L]
0 L]
5.0 ®
-10.0
5.0 0 50 100

Fatigue-induced changes to peak knee flexion (degrees), increase (-] / decrease [+] after fatigue

Figure 3. Fatigue-Induced Biomechanical Patellar Tendinopathy Injury Risk Profiles.

Players who did not develop patellar tendinopathy during follow-up are presented with black dots (n = 69), those who developed patellar tendinopathy are
indicated with red dots (n = 10). Players were divided into four quadrants with colour codes based on their change (decrease or increase) in hip and knee flexion
after fatigue. Rectus femoris MTU lengthening and subsequent patellar tendinopathy injury risk increased according to the colour of the quadrant (green >

yellow > orange > red). The threshold for peak hip flexion decreases of >3.5° that may precipitate patellar tendinopathy is indicated with a red line.

20

$S900E 93l) BIA /1-90-GZ0Z 1e /woo Aloyoeignd:poid-swiid yiewlayem-jpd-awiid;/:sdiy woly papeojumoq



391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

1 hip flexion and | knee flexion (1 out of 9 players, 11%, developed patellar tendinopathy)

1 hip flexion and 1 knee flexion (0 out of 3 players, 0%, developed patellar tendinopathy)
Patellar tendinopathy injury risk
| hip flexion and | knee flexion (7 out of 59 players, 12%, developed patellar tendinopathy)

| hip flexion and 1 knee flexion (2 out of 8 players, 25%, developed patellar tendinopathy)

2. Limitations and Research Implications

First, this study did not conduct pre-season VISA-P questionnaires, nor clinical and/or
ultrasonographic examinations, implying that asymptomatic pathological tendons may have been
included and structural/functional changes from baseline could not be sufficiently monitored during
follow-up. Second, multivariate Cox regression analysis was not approp due to an insufficient

number of players who developed PT during study follow-up (n = as far below the

expected 26 injuries as estimated from previous prospective irfur veil 2 A closer examination
on this revealed that the prevalence of previous patell ndogpco ints was 3.3 times lower in our
study population compared to the population on which the agve estimation was based (i.e., 22.8% vs.
75.0%, respectively),? which may have resulted er initial risk for our athletes.?® Next to the

lack of multivariate analyses in our study, r of biomechanical risk factors were measured

without correcting the level of a.
need to be confirmed in futur
male participants w,
population. Third, p on loading, as calculated in this study, may potentially underestimate
true tendon loading.®% In line with this, MTU length changes, as calculated in this study, may include
intra- and/or inter-subject anatomical/anthropometric variations, and may even not accurately reflect in
vivo 3D athletic muscle function.?! In this context, patellar tendon strain could not be calculated since
patellar motion is unmeasurable using skin markers. Future studies could simultaneously determine
muscle fibre length through ultrasonography to derive tendon length. Strain gauges (e.g., shear wave
tensiometers) may also have the capacity to measure tendon strain in a more direct way.® Finally, the

high variability in reported duration from pre-season screening to PT symptom onset implies that

cumulative fatigue and/or biomechanical adaptations may have influenced symptom development
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throughout the season. Supplemental biomechanical assessments at critical time points during the
season seem crucial, for example after mid-season breaks or in the later stages of the season when

levels of physical fitness may well be different and/or accumulated fatigue/loading occurs.®"%

3. Clinical Implications

Considering the explorative nature of this study, we can only give some preliminary clinical
recommendations. The observation of fatigue-induced jump-landing biomechanics made it possible to
more accurately identify those volleyball players at risk for PT (Appendix 2-3). All risk factors that
were significant pre-fatigue became stronger predictors post-fatigue (i.e., rectus femoris MTU length
at initial contact and pelvis-trunk flexion at initial contact/peak pelvi nk flexion/peak knee

not significant pre-fatigue (i.e., rectus femoris MTU lengthpat th/peak knee flexion/take-off

flexion/take-off). Moreover, the fatigue protocol revealed additional @ post-fatigue that were
&
and hip flexion at initial contact/peak hip flexion). Thi viden€e that volleyball players should
additionally be screened under fatigued conditions when inv@stigating PT injury risk, aligning with
previous screening recommendations for other | exXfremity overuse injuries like exertional medial
tibial pain (EMTP), where fatigue&as@ shown to make differences more apparent by
decreasing neuromuscular functi(%/m gs for PT injury risk should predominantly focus on
detecting an adverse declin hi ement strategies (i.e., less hip flexion during horizontal

landing/push-off) a ghas !t may impede optimal rectus femoris MTU function. Especially

those players that de fatigue-induced hip flexion decreases of >5.9° and >3.5° at initial
contact and at peak, respectively, might be closely monitored throughout the entire season and may
benefit from participating in customized injury prevention programs. Such injury prevention programs
may incorporate hip-specific exercises (e.g., improving strength/fatigue resistance of the gluteal
muscles) and/or technique modifications (e.g., more hip flexion during landing) under fatigued

circumstances.'** Future studies should explore the effectiveness of such interventions in populations

at risk for PT.
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Conclusion

This is the first explorative prospective study to investigate fatigue-induced biomechanical risk
factors for PT during a spike jump-landing in volleyball. Despite the low (injured) sample size of this
study, inclusion of a fatigue protocol enhanced the identification of risk factors, with less hip flexion
during landing and more elongated rectus femoris MTUs after fatigue emerging as preliminary
contributors to PT development. Assessment and training of these risk factors are thought to be

essential for reducing PT injury incidence in the future.
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Appendix 1. Calculation of Patellar Tendon Loading (Force) and Quadriceps Muscle-Tendon

Unit Lengths.

Patellar tendon loading (force) was computed by dividing the net sagittal plane knee joint moment
(normalized for body mass) by the patellar tendon moment arm length, which was predicted based on Herzog

& Read as follows:

Patellar tendon moment arm length (cm) = 4.71 + (0.042 x ) + ((-0.896 x 107%) x ?) + ((0.447 x 107°) x j9).

In this equation, B represents the knee joint angle in the sagittal plane, measur@ees_19

9

L 4
Quadriceps muscle-tendon unit (MTU) lengths were calculafed N alized for thigh length according

to the following regression equations of Hawkins & Hull:

= Rectus femoris MTU length (x times thigh length 07 + ((-1.50 x 10) x ) + ((1.99 x 10®) x j)
= Vastus intermedius MTU length (x times thjgile 0.496 + ((3.88 x 107) x ) + ((-1.63 x 10°) x 2

= Vastus lateralis MTU length (x ti e?&ngth =0.569 + ((4.06 x 10°°) x ) + ((-2.07 x 10”°) x £?)

= Vastus medialis MTU length (x tigaes tigh¥ength) = 0.489 + ((3.07 x 107) x ) + ((-1.53 x 10°) x )

In these equations, o an e hip and knee joint angles in the sagittal plane, measured in degrees,

respectively.?
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Appendix 2. Pre-Fatigue Biomechanical Predictors for Patellar Tendinopathy.

Variables Control PT p-value” Hazard ratio with Hedge’s g
(n=69) (n=10) 95% ClI effect size
Primary outcome variable
Patellar tendon loading (x times body weight) 7.24£1.08 7.55 £ 0.69 0.538 1.262 (0.597-2.669) 0.292
Secondary/exploratory outcome variables
Pelvis-trunk flexion (degrees), extension (-) / flexion (+)
Initial contact 21.88+11.90 33.36 £ 15.75 0.025 1.058 (1.007-1.112) 0.916

R
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Peak pelvis-trunk flexion
Peak knee flexion
Take-off

Hip flexion (degrees), flexion (-) / extension (+)
Initial contact
Peak hip flexion
Peak knee flexion
Take-off

Knee flexion (degrees), flexion (-) / extension (+)
Initial contact
Peak / Peak knee flexion
Take-off

Ankle dorsiflexion (degrees), dorsiflexion (-) / plantarflexion (+)
Initial contact
Peak ankle dorsiflexion
Peak knee flexion
Take-off

Rectus femoris MTU length (% thigh length), N (<) / 72 (+)
Initial contact
Peak length
Peak knee flexion
Take-off

Vastus intermedius MTU length (% thigh length), N (-) / 7 (+)
Initial contact
Peak length
Peak knee flexion
Take-off

Vastus lateralis MTU length (% thigh length), N (-) / 7~ (+)
Initial contact
Peak length
Peak knee flexion
Take-off

Vastus medialis MTU length (% thigh length), N (<) / 7~ (+)
Initial contact
Peak length
Peak knee flexion
Take-off

The control group consisted of 35 injury-fre
highlighted in bold. * Unadjusted

2447 +11.17
16.25+11.38
-9.64 +£11.46

-54.09 + 10.80

-70.22 +11.28

-48.12 +11.01
-0.35+9.13

-25.57 £6.45
-82.44 £ 7.63
-10.21+5.24

-717.43 £6.55
-86.78 +£5.88
-85.72 £5.95
-31.97 £5.49

107.68 + 1.47
120.37 +1.58
119.89 + 1.55
112.68 + 1.56

0.58 +0.02
0.70 £ 0.01
0.70 £0.01
0.53+0.02

0.66 +0.02

35.58 + 16.08
26.77£17.91
1.58 + 15.06

-46.22 +£15.19

-62.27 £ 15.09

-44.21 +15.11
5.63+14.19

-26.92 £5.42
-85.06 £ 6.76
-10.85+5.20

-75.62 £ 6.60
-88.33 £6.04
-87.24+6.11
-32.36 £ 3.73

109.12 + 2.67
121.47 £ 1.99
121.00 +2.02
113.70 + 2.00

.66 + 0.02
+0.00
0.76 £ 0.00
0.61 +£0.02

0.56 +0.01
0.64 +0.00
0.64 +0.00
0.52+0.01

0.023
0.049
0.017

0.091
0.108
0.631
0.103

0.328
0.322
0.896

0.469
0.285
0.345
0.638

0.012
0.081
072
88

13
7269
0.266
0.892

0.309
0.211
0.199
0.890

0.309
0.218
0.212
0.890

1.063 (1.008-1.122)
1.054 (0.997-1.115)
1.073 (1.006-1.145)

1.045 (0.990-1.104)
1.041 (0.989-1.097)
1.013 (0.961-1.067)
1.054 (0.986-1.126)

0.951 (0.862-1.050)
0.960 (0.888-1.038)
0.992 (0.884-1.114)

1.034 (0.950-1.126)
0.928 (0.804-1.071)
0.938 (0.818-1.077)
0.969 (0.851-1.104)

1.590 (1.094-2.312)
1.536 (0.934-2.526)
1.558 (0.958-2.533)
1.425 (0.944-2.152)

1.189 (0.851-1.660)
1.553 (0.718-3.359)
1.556 (0.721-3.361)
1.023 (0.736-1.423)

1.195 (0.849-1.682)
3.012 (0.501-18.107)
3.133 (0.509-19.271)

1.023 (0.741-1.412)

1.263 (0.807-1.977)
3.467 (0.455-26.383)
3.520 (0.461-26.870)

1.030 (0.673-1.577)

0.929
0.846
0.930

0.684
0.667
0.335
0.601

0.211
0.345
0.122

0.273
0.261
0.253
0.071

0.865
0.670
0.681
0.628

0.224
0.364
0.367
0.123

0.227
0.378
0.383
0.123

0.227
0.377
0.380
0.123

sion with competing risks.
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Appendix 3. Post-Fatigue Biomechanical Predictors for Patellar Tendinopathy.

Variables Control PT p-value” Hazard ratio with Hedge’s g
(n=69) (n=10) 95% ClI effect size
Primary outcome variable
Patellar tendon loading (x times body weight) 6.99 = 0.95 7.58 £ 0.56 0.138 1.741 (0.838-3.621) 0.639
Secondary/exploratory outcome variables
Pelvis-trunk flexion (degrees), extension (-) / flexion (+)
Initial contact 20.76 +11.51 33.88+£14.73 0.006 1.075 (1.020-1.133) 1.089
Peak pelvis-trunk flexion 24.56 £ 10.51 37.87 £ 13.54 0.003 1.092 (1.029-1.159) 1.208
Peak knee flexion 17.86 + 10.93 30.56 + 14.64 0.007 1.085 (1.016-1.159) 1.100
Take-off -8.56 + 11.05 3.40+11.34 0.005 1.092 (1.020-1.168) 1.045
Hip flexion (degrees), flexion (-) / extension (+)
Initial contact -49.87 +£10.30 -38.32+£12.49 0.004 1.093 (1.021-1.171) 1.081
Peak hip flexion -67.19 +10.58 -56.77 £11.20 0.008 1.085 (1.014-1.160) 0.969 J
Peak knee flexion -45.57 £ 9.96 -39.85 +10.15 0.205 1.041 (0.975-1.112) 0.568 =
Take-off 0.53+8.80 7.55+11.33 0.054 1.071 (0.993-1.155) 0.762 3|
ol
[0}
Knee flexion (degrees), flexion (-) / extension (+) %
Initial contact -21.40 £ 6.26 -21.14 +£3.88 93 0.993 (0.897-1.100) 0.042 S
Peak / Peak knee flexion -79.42 £7.58 -82.99 £ 6.37 0. 0.954 (0.887-1.026) 0475 o
Take-off -10.02 £5.13 -11.33 £ 6.46 2 0.966 (0.872-1.071) 0.244 3
3|
Ankle dorsiflexion (degrees), dorsiflexion (-) / plantarflexion (+) 3
Initial contact -76.48 £ 6.41 0.686 1.021 (0.926-1.126) 0.182 9
Peak ankle dorsiflexion -85.01 £5.99 0.115 0.890 (0.763-1.039) 0.460 <
Peak knee flexion -83.87£6.0 0.159 0.911 (0.794-1.045) 0458 =
Take-off -31.32£5.74 0.572 0.965 (0.853-1.092) 0.063 @
3
Q
Rectus femoris MTU length (% thigh length), N (<) / 2 (+) A
Initial contact 107.4 109.16 +2.12 0.002 1.897 (1.235-2.916) 1.048 S
Peak length 120. 121.75+ 1.65 0.008 2.010 (1.185-3.411) 0.994 cBD
Peak knee flexion 119.6 42 121.24+1.70 0.003 2.100 (1.294-3.407) 1.069 K
Take-off 114.09 £ 1.93 0.018 1.669 (1.082-2.575) 0.851 =
c
Vastus intermedius MTU length (% thigh length), ~ (-) / §
Initial contact 7 +0.02 0.57 £0.01 0.847 1.033 (0.746-1.430) 0.022 g
Peak length .70+£0.01 0.71+0.01 0.167 1.668 (0.821-3.388) 0.492 =
Peak knee flexion 0.70 £ 0.01 0.71+0.01 0.165 1.673 (0.823-3.397) 0495 §
Take-off 0.53+0.02 0.54 +0.02 0.531 1.101 (0.816-1.486) 0.234 ]
N
Vastus lateralis MTU length (% thigh le 2 (+ §
Initial contact 0.65+0.02 0.65+0.01 0.834 1.036 (0.746-1.437) 0.017 4
Peak length 0.76 £ 0.01 0.76 £ 0.00 0.113 3.396 (0.698-16.535) 0.496 <
Peak knee flexion 0.76 £ 0.01 0.76 + 0.00 0.102 3.634 (0.710-18.594) 0.500
Take-off 0.61+0.02 0.61+0.02 0.533 1.099 (0.819-1.474) 0231 9|
@
Vastus medialis MTU length (% thigh length), N (-) / 7 (+) g
Initial contact 0.55+0.01 0.55+0.01 0.836 1.047 (0.681-1.610) 0.017 g
Peak length 0.64 +0.00 0.64 + 0.00 0.119 4.061 (0.659-25.025) 0.498 &
Peak knee flexion 0.64 +0.00 0.64 +0.00 0.112 4.223 (0.668-26.715) 0.501
Take-off 0.52+0.01 0.52 +0.02 0.533 1.132 (0.769-1.669) 0.231

The control group consisted of 35 injury-free players and 34 players with competing risks. Values are expressed as mean + SD. Significant predictors are

highlighted in bold. * Unadjusted univariate Cox regression with competing risks.
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Appendix 4. Additional Explorative Analysis on Patellar Tendon Loading.

Peak patellar tendon loading Injury-free Competing Competing Patellar
(n=235) risks risks tendinopathy
(n=34) (n=24)
Pre-fatigue (x times body weight) 7.12+1.15 7.37£0.99 | 7.45+1.06 7.55 £+ 0.69
Post-fatigue (x times body weight) 6.75 £ 0.99 724+086 | 7.45%0.86 7.58 £ 0.56
Average pre- and post-fatigue (x times body weight) 6.93 + 1.05 7.31+0.88 | 7.45+0.92 7.57 £0.59
Delta Post — Pre (x times body weight), N (-) / 7 (+) -0.37+0.45 | -0.13+0.60 | -0.00+0.58 | +0.03+0.44

after fatigue

* Other knee extensor mechanism issues (i.e., patellar tendon complaints that did not meet the inclusion criteria, quadriceps muscular complaints and

medial/lateral knee joint pain) were excluded from the competing risk group to explore if these issues show ipjury mechanisms similar to the patellar

tendinopathy experimental group. As excluding them increased (rather than decreased) patellar tendon loads in the c

ing risk group, we assume that these
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Appendix 5. Relative Joint Work Before and After the HIIP-5 (mean and 95% CI).

w Hip Knee Ankle Hip Knee Ankle
A +3% -7% +0,5% +3% -5% +2%

Relative eccentric joint work (ratio)

Control

B 10 Hip Knee Ankle Hip Knee Ankle
-3% +2% +1% -8% +6% +1%
[}
0.6

04

02

Relative concentric joint work (ratio)

00

02

Control Patellar tendinopathy

Eccentric (negative, from initial contact to peak knee flexion) and concentric (positive, from peak knee flexion to take-off) joint work was extracted by
integrating the joint power curve. Overall joint work was calculated by the sum of the hip, knee and ankle joint work, and for each joint, the relative contribution

to the overall joint work (ratio) was calculated.

A: relative eccentric joint work (landing phase), B: relative concentric joint work (push-off phase). Pre-HIIP-5 = grey bar; post-HIIP-5 = black bar. The

percentage change post- vs. pre-fatigue is reported for each joint in both groups.
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