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 1 

Open Source, Open Science: Development of OpenLESS as the Automated Landing Error 1 

Scoring System 2 

Context: The Open Landing Error Scoring System (OpenLESS) is a novel tool for automating 3 

the LESS to assess lower extremity movement quality during a jump-landing task. With the 4 

growing use of clinical measures to monitor outcomes and limited time during clinical visits, 5 

there is a need for automated systems. OpenLESS is an open-source tool that uses a markerless 6 

motion capture system to automate the LESS using 3D kinematics. 7 

Objective: To describe the development of OpenLESS, examine its validity against expert rater 8 

LESS scores in healthy and clinical cohorts, and assess its intersession reliability in an athlete 9 

cohort. 10 

Design: Cross-Sectional 11 

Participants: 92 total adult participants from three distinct cohorts: a healthy university student 12 

cohort (12 males, 14 females; age=23.0±3.8 years; height=171.9±8.3 cm; mass=75.4±18.9 kg), a 13 

post-anterior cruciate ligament reconstruction (ACLR) cohort (8 males, 19 females; 14 

age=21.4±5.7 years, height=173.5±12.5 cm; mass=73.9±13.1 kg; median 33 months post-15 

surgery), and a field-based athlete cohort (39 females; age=25.0±4.7 years, height=165.0±7.1 16 

cm; mass=63.5±8.6 kg). 17 

Main Outcome Measure(s): The OpenLESS software interprets movement quality from 18 

kinematics captured by markerless motion capture. Validity and reliability were assessed using 19 

intraclass correlation coefficients (ICC), standard error of measure (SEM), and minimal 20 

detectable change (MDC). 21 

Results: OpenLESS agreed well with expert rater LESS scores for healthy (ICC2,k=0.79) and 22 

clinically relevant, post-ACLR cohorts (ICC2,k=0.88). The automated OpenLESS system reduced 23 
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 2 

scoring time, processing all 353 trials in under 25 minutes compared to the 35 hours (~6 minutes 24 

per trial) required for expert rater scoring. When tested outside laboratory conditions, OpenLESS 25 

showed excellent reliability across repeated sessions (ICC2,k>0.89), with a SEM of 0.98 errors 26 

and MDC of 2.72 errors. 27 

Conclusion: OpenLESS is a promising, efficient tool for automated jump-landing assessment, 28 

demonstrating good validity in healthy and post-ACLR populations, and excellent field 29 

reliability, addressing the need for objective movement analysis. 30 

Keywords: Landing Error Scoring System, markerless motion capture, movement assessment, 31 

clinical motion analysis, anterior cruciate ligament 32 

Abstract Word Count: 294 33 

Manuscript Word Count: 4,474 34 

Key Points 35 

 OpenLESS accurately detected jump-landing initial contact and toe-off events 36 

(ICC>0.99) using markerless motion capture, validating its use as an alternative to 37 

laboratory-based force plate measurements. 38 

 The automated scoring system showed good agreement with expert raters in healthy 39 

(ICC=0.79) and post-anterior cruciate ligament reconstruction (ICC=0.88) populations. 40 

 OpenLESS demonstrated good to excellent test-retest reliability (ICC=0.89) across 41 

multiple testing sessions, with minimal score variation, supporting its utility for 42 

longitudinal movement assessment. 43 

 44 

  45 
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 3 

Functional movement screening is a well-established component for assessing lower extremity 46 

injury risk in clinical and athletic populations.
1–3

 The National Athletic Trainers’ Association’s 47 

position statement and American Physical Therapy Association’s practice guidelines have 48 

recommended applying movement quality assessments to identify individuals with heightened 49 

injury risk, enabling the implementation of targeted prevention strategies such as strength 50 

training, flexibility exercises, and movement retraining.
2,4

 While laboratory-based optical 3-51 

dimensional (3D) motion capture systems are considered the gold standard for quantifying 52 

biomechanical risk factors,
5
 their substantial time and financial (up to $150,000 per system) 53 

requirements render them impractical for large-scale injury risk screening programs.
6
 As such, 54 

there is a growing need for efficient, field-based functional assessment tools that can be readily 55 

deployed to identify high-risk movement patterns within clinical and athletic populations. 56 

The Landing Error Scoring System (LESS) has become a widely accepted clinical tool for 57 

evaluating jump-landing mechanics.
3,7–9

 Initially developed to screen 'at-risk' individuals for non-58 

contact injuries, video is used to capture jump-landings and subsequently graded on 17 criteria 59 

over three jump-landing trials.
8
 A maximal score of 19 errors can be reached for exceptionally 60 

poor performances, with a score of <5 errors considered to be good (i.e., low risk). The LESS has 61 

been validated against 3D motion capture,
8,10,11

 and high LESS scores have been associated with 62 

movement patterns linked to larger injury risk, such as anterior cruciate ligament (ACL) injuries, 63 

including smaller flexion at the hip and knee, larger knee valgus, internal rotation moments, and 64 

elevated anterior tibial shear forces upon landing from a jump.
8,11,12

 Supporting its clinical 65 

relevance, prospective studies have shown that youth soccer athletes who perform better (fewer 66 

errors) on the LESS have a lower risk of ACL injury.
9
 67 
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 4 

Building upon this foundation, Mauntel et al.
13

 subsequently developed an automated grading 68 

system for an expanded LESS version, utilizing a depth camera and Kinect sensor (Microsoft 69 

Corp, Redmond, WA) with proprietary machine learning algorithms to calculate the relevant 70 

kinematic variables. This automated system reliably estimated kinematics during drop vertical 71 

jump assessments
13

 and demonstrated moderate agreement against the gold standard 3D motion 72 

capture approach.
14

 Advancements in deep learning computer vision and markerless motion 73 

capture have enabled further efforts to automate LESS scoring.
15

 While this prior work 74 

demonstrated the feasibility of machine learning-based LESS assessment, the proprietary nature 75 

of the underlying code and methods limited broader accessibility. In contrast, open-source 76 

solutions leveraging frameworks like OpenPose
16

 and HRNet
17

 offer a more scalable path to 77 

bringing efficient, automated movement quality assessments into clinical practice.
5
 78 

Given the growing emphasis on efficient, cost-effective assessment tools within clinical practice, 79 

automating the LESS represents a promising avenue to expand the utility and accessibility of this 80 

validated movement quality screening.
3,7

 Prior efforts to automate LESS scoring have 81 

demonstrated the technical feasibility of this approach,
13–15

 but the proprietary nature of these 82 

systems has limited their widespread adoption. In contrast, open-source frameworks leveraging 83 

markerless motion capture, such as OpenCap (Stanford University, USA),
6,18

 offer a more 84 

scalable path to integrating automated LESS assessments into clinical and athletic settings. 85 

The primary aim of the present study was to develop and evaluate the validity and reliability of 86 

OpenLESS, an automated scoring system for the LESS utilizing open-source software and low-87 

cost markerless motion capture (OpenCap). To demonstrate the clinical utility of this approach, 88 

OpenLESS was validated against expert rater scores in healthy and post anterior cruciate 89 

ligament reconstruction (ACLR) populations, with intersession reliability examined in an 90 
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 5 

amateur athlete cohort. We hypothesized that the automated scoring software (Supplemental File 91 

1) using markerless motion capture would be a valid and reliable version of the LESS.  92 

METHODS 93 

Design 94 

This secondary analysis included three different cohorts from repeated measures and cross-95 

sectional observational studies to assess the measurement properties of an automated pipeline for 96 

scoring the LESS using a portable, low-cost, markerless motion capture system. To assess 97 

validity, we compared OpenLESS scores to expert rater LESS scores in a healthy cohort and a 98 

post-ACLR cohort. Reliability of OpenLESS was assessed in a field-based athlete cohort across 99 

up to four visits over a month. This study followed the Strengthening the Reporting of 100 

Observational Studies in Epidemiology (STROBE) guidelines,
19

 ensuring comprehensive 101 

reporting and transparency (Figure 1). 102 

Participants 103 

Participants across all cohorts were adults and provided written informed consent. The healthy 104 

cohort consisted of 26 university students (12 males, 14 females) with no history of lower 105 

extremity surgery or injuries in the last 6 months, approved by the University of XXX's 106 

Institutional Review Board (IRB: XXX). The post-ACLR cohort included 27 individuals (8 107 

males, 19 females) 6-72 months post-ACLR surgery, approved by the University of XXX (IRB 108 

XXX). Both healthy and post-ACLR participants completed a single session in the biomechanics 109 

laboratory, where they performed the LESS jump-landing while their movements were recorded 110 

using a markerless motion capture system. 111 

The field-based athlete cohort comprised 39 females (18 amateur soccer players, 10 university 112 

athletes from ball and non-ball sports, and 11 recreational weightlifters) with no current lower 113 
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 6 

extremity injuries, approved by University XXX (REC Project ID: XXX). Athlete participants 114 

were assessed outside a laboratory environment in a variety of spaces (soccer pitch [grass], 115 

athletic field [turf], and an indoor recreation center) across up to four consecutive sessions. Each 116 

athlete was tested in the same environment for all sessions, during which they performed the 117 

LESS jump-landing while their movements were recorded using a markerless motion capture 118 

system. To be included in analysis, participants needed to attend at least two of the four potential 119 

sessions, which could be non-consecutive. 120 

Testing Procedures 121 

The Task: LESS Jump-Landing  122 

All cohorts’ participants performed the double-leg jump-landing rebound task under markerless 123 

motion capture, referred to as the jump-landing task (Figure 2).
8
 Participants jumped from a 30 124 

cm box to a landing spot 50% of their height in front, landed, and then performed a maximal 125 

vertical jump. After verbal instruction, up to three practice trials were allowed, followed by the 126 

real trials, with three successful trials collected for analysis. Trial success was determined if the 127 

participant (1) jumped and landed correctly, (2) jumped vertically during the maximal jump, and 128 

(3) completed the task without losing balance. Participants wore their preferred footwear and the 129 

validation cohorts were required to wear tight-fitting clothing, whereas the field-based athlete 130 

cohort were allowed to wear their usual exercise clothing.
20

 131 

The area of interest for scoring the movement quality with the LESS was the first landing of the 132 

jump-landing task.
8,13

 The first landing was defined as the stance phase bounded by the moment 133 

of initial foot contact with the ground to take off (i.e., toe off). The stance phase was divided into 134 

a braking phase and a propulsion phase. The braking phase was defined as the time interval from 135 

the feet contacting the ground (Figure 2A) to the lowest point of the braking phase before 136 

Onli
ne

 Firs
t

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-17 via free access



 7 

upward movement (identified by peak knee flexion; Figure 2B). The propulsion phase was 137 

defined as the time interval from the lowest point of the braking phase before upward movement 138 

(Figure 2B) to the feet taking off the ground (Figure 2C). The lowest point of the braking phase 139 

before upward movement (Figure 2B) was considered as the transition from eccentric to 140 

concentric movement.
21

  141 

Expert Rater LESS Grading 142 

The original LESS evaluated 17 specific movement characteristics during the jump-landing task, 143 

with items scored at initial ground contact (Figure 2A), during the braking phase (Figure 2A to 144 

2B), and at peak knee flexion (Figure 2B).
8,9

 Each item is scored dichotomously (0 or 1) or 145 

categorically (0, 1, or 2) based on the presence or absence of movement errors where an error 146 

from either limb results in error for that item, with a total possible score ranging from 0 to 19 147 

errors. The scoring criteria include the assessment of sagittal and frontal plane positioning of the 148 

trunk, hips, and knees, and additional items for overall movement quality and symmetry.
8,9

 The 149 

LESS has demonstrated good interrater (ICC2,k = 0.84, SEM = 0.71) and intersession (ICC2,k = 150 

0.81, SEM = 0.81) reliability, with higher scores indicating more aberrant movement patterns 151 

that may increase injury risk.
8,10

 We used a modified version of the LESS, expanded to 19 items 152 

by Mauntel et al.
13

 to include two additional asymmetrical landing characteristics, who 153 

demonstrated strong agreement between an automated grading tool and expert raters. 154 

Two expert clinicians (a licensed physical therapist and athletic trainer, each with >10 years of 155 

orthopedic and sports medicine experience) independently scored the jump-landing trials. Both 156 

raters completed standardized training and reliability testing using a 60-trial test set developed by 157 

the original LESS author, demonstrating excellent interrater reliability (ICC >0.9).
8
 The physical 158 

therapist assessed the healthy cohort, and the athletic trainer assessed the ACLR cohort. 159 
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 8 

The System: OpenCap Markerless Motion Capture 160 

The 3D kinematics of the trunk and lower extremities were collected using two smartphones 161 

(iPhone 12 SE, Apple Inc., Cupertino, CA, USA) running OpenCap v0.3 (Stanford, USA) 162 

markerless motion capture software.
22

 OpenCap has been validated against optoelectronic 3D 163 

motion capture systems.
6,18,23

 The smartphones were positioned at a standardized distance of 3 164 

meters from the landing area, 1.5 meters off the ground, and at 45˚ angles to the target area 165 

(Figure 3). We followed OpenCap’s best practice guidelines
6
 for smartphone setup, calibration 166 

with a 720x540 mm checkerboard, and the recording of a static trial. Markerless motion capture 167 

was sampled at 60 Hz for the post-ACLR and field-based athlete cohorts and 240 Hz for the 168 

healthy cohort using the default pose estimation algorithm (HRnet)
17

 via OpenCap’s cloud-based 169 

software (v0.3).
6
 Two additional smartphones were used in the post-ACLR and healthy 170 

validation cohorts to record the sagittal and frontal plane camera views for expert rater LESS 171 

grading.
8
 Further technical details can be found in the development and validation paper by 172 

Uhlrich et al.
6
 173 

Vertical ground reaction forces (vGRF) were collected on a subsample of 12 participants within 174 

the post-ACLR cohort for validating event timing. The vGRF data was sampled at a frequency of 175 

2400 Hz from two embedded force plates (FP406020, Bertec Corp) and synchronized to the 176 

timing of the markerless motion capture system. The force plates were set up with a cartesian 177 

coordinate system with axes defined as z-axis vertical, x-axis anterior-posterior, and y-axis 178 

medial-lateral. Before each participant began their jump-landing trials, the force plates were 179 

zeroed, and their mass was recorded while they stood equally on both force plates. 180 

The Pipeline: OpenLESS Automated Scoring 181 
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 9 

After recording jump-landing trials, raw trial data were automatically uploaded and processed 182 

over the cloud via OpenCap’s web interface. OpenCap’s automated processing suite included 183 

data extraction, pose estimation, time synchronization, and 3D anatomical marker set derivation.
6
 184 

The 3D kinematics are then computed from the derived marker trajectories using inverse 185 

kinematics
24,25

 and a musculoskeletal model with biomechanical constraints.
6,26,27

 The resulting 186 

musculoskeletal model included 33 degrees of freedom with 15 used in our analysis – 3 for the 187 

trunk, 3 per hip, 1 per knee, and 2 per ankle.
6,26,27

 The final outputs of interest from the 188 

automated cloud processing included the marker (.trc) files containing 3D anatomical marker 189 

trajectories and motion (.mot) files containing 3D joint angles.  190 

A custom Python (v.3.10.12) pipeline, OpenLESS, was developed for reading, signal processing, 191 

and extracting kinematic variables of interest from OpenCap, then algorithmically scoring the 192 

LESS based on jump-landing movement quality (Figure 4). OpenLESS Python script is provided 193 

in the Supplemental File 1. Before entry into the OpenLESS pipeline, each trial OpenCap video 194 

recording was inspected for completeness of the entirety of movement, and kinematic waveforms 195 

were assessed for biological plausibility. Trials were removed if there were any errors in cloud 196 

processing, pose estimation, and/or if the trial exuded excessive noise outside of 197 

expectation.
6,18,23

  198 

After determining eligibility, the marker trajectory and kinematic data were entered into the 199 

custom OpenLESS pipeline, which performed the following steps: (1) marker trajectories and 200 

kinematics were filtered with a 4th order, 12 Hz low-pass Butterworth filter; (2) stance phase 201 

was identified by determining key events for initial ground contact and rebound jump take-off; 202 

(3) initial ground contact was identified as the first global minimum of the great toe marker 203 

trajectory in the vertical axis (y-axis); (4) rebound jump take-off was identified as the second 204 
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 10 

global minimum of the great toe marker trajectory in the vertical axis; (5) a quality control step 205 

was incorporated, wherein the automatically detected key events outlining the contact phase 206 

were plotted for manual inspection to ensure accuracy before proceeding with grading; (6) the 207 

lowest point of the braking phase before upward movement was determined by the frame where 208 

knee flexion angle was at its peak; and (7) 3D marker trajectories and joint angles at both initial 209 

contact and the lowest point of the braking phase were extracted. 210 

The OpenLESS then uses the joint trajectories and kinematics at the event times of interest 211 

(Figure 2A to 2B) to score each item of the expanded 19-item LESS (22 possible errors) based 212 

on clinically- and literature-informed cut-offs.
3,8,9,12,13,28–30

 Identical to the expert rater LESS, an 213 

error present on either limb results in an error for that associated LESS item. The two additional 214 

OpenLESS items capture asymmetric foot landing and weight shift patterns, recently identified 215 

as clinically relevant movement characteristics.
13,29

 Technical details for scoring each LESS item 216 

are made available in Supplemental File 2. Data cleaning, processing, and LESS scoring were 217 

performed in Python (v3.10.12) using the SciPy (v1.5.4), pandas (v2.2.2), and NumPy (v2.0) 218 

packages. 219 

STATISTICAL ANALYSIS 220 

Statistical analyses were conducted using R Statistical Software (v4.4.1, R Core Team 2024). 221 

The normality of LESS scores was evaluated through visual inspection of histograms and 222 

quantile-quantile plots. Descriptive statistics are presented as mean ± standard deviation or 223 

median [interquartile range, IQR] if not normally distributed. Expert-rater LESS and automated 224 

OpenLESS scores were calculated as the mean score across all successful jump-landing trials 225 

within each participant. 226 
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 11 

Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) were calculated 227 

using the psych package (v2.6.4.26) to evaluate concurrent validity and reliability.
31,32

 A two-way 228 

random-effects model for an absolute agreement based on single ratings (ICC2,1) was used for 229 

event timing, and average ratings (ICC2,k) were used for LESS scores. For reliability, a linear 230 

mixed-effects model was used to calculate ICC2,k, optimizing the use of available information 231 

while accounting for variability across time points. ICC values were interpreted according to 232 

established guidelines: poor (0.0-0.5), moderate (0.5-0.75), good (0.75-0.9), and excellent (0.9-233 

1.0).
32

  234 

To further assess the validity of OpenLESS derived scores compared to expert-rater LESS 235 

scores, Pearson’s correlation coefficient (R) and Bland-Altman limits of agreement (LoA) were 236 

computed using the stats (v4.2.3) and blandr (v0.5.1) packages.
31

 Pearson correlations were 237 

categorized as per Portney and Watkins:
32

 ≤0.25 (little/no), 0.25-0.50 (low/fair), 0.50-0.75 238 

(moderate/good), and ≥0.75 (strong) relationship. 239 

Reliability measurement error was quantified using the standard error of measurement (SEM), 240 

calculated as 𝑆𝐸𝑀 = 𝑆𝐷√1 − 𝐼𝐶𝐶, where SD represents the pooled standard deviation of test 241 

and retest scores.
31

 The minimal detectable change (MDC) was calculated as 𝑀𝐷𝐶 = 1.96 ×242 

√2 × 𝑆𝐸𝑀.
31

 The SEM and MDC were expressed in the units of the measure (number of LESS 243 

errors).  244 

RESULTS 245 

The healthy cohort used in the validation arm consisted of 26 individuals (12 males, 14 females; 246 

age = 23.0 ± 3.8 years, height = 171.9 ± 8.3 cm; mass = 75.4 ± 18.9 kg). The post-ACLR cohort 247 

used in the validation arm consisted of 27 individuals (8 males, 19 females; age = 21.4 ± 5.7 248 

years, height = 173.5 ± 12.5 cm; mass = 73.9 ± 13.1 kg) that were 6-72 months post ACLR 249 
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 12 

surgery (median: 33.0 [IQR: 50.5] months post-op; International Knee Documentation 250 

Committee [IKDC] = 83.2 ± 14.3). The field-based athlete cohort used in the reliability arm 251 

consisted of 39 recreationally athletic females (18 amateur soccer players, 10 university athletes 252 

from ball and non-ball sports, 11 recreational weightlifters; age = 25.0 ± 4.7 years, height = 253 

165.0 ± 7.1 cm; mass = 63.5 ± 8.6 kg). 254 

A small percentage of OpenCap-recorded trials (5.2%; 33/639) could not be processed through 255 

the OpenLESS pipeline due to factors such as excessive noise in the kinematic data, incomplete 256 

capture of the jump-landing movement, or failure to detect key events. However, since all 257 

participants contributed multiple trials and their LESS scores were averaged within individuals 258 

for validity and reliability analyses (ICC2,k), this was unlikely to have impacted our study’s 259 

findings. 260 

Event Detection 261 

The OpenLESS event detection pipeline, utilizing OpenCap kinematics and trajectories, 262 

demonstrated excellent validity in identifying initial ground contact and toe-off events when 263 

compared to force-plate measurements across 98 jump-landing trials (ICC2,1 > 0.99, p < 0.001, 264 

Supplemental File 3). 265 

Criterion Validity 266 

Analysis of the healthy, college-aged cohort revealed good agreement between expert rater 267 

assessment and the automated OpenLESS pipeline for total LESS scores (ICC2,k = 0.79, p < 268 

0.001, Table 1). Box-whisker plots are presented in Figure 5A to display the range of values from 269 

both LESS scoring methods (Expert and OpenLESS). The Bland-Altman analysis (Figure 5C) 270 

estimated a mean bias of 0.35 (95% CI: -0.05, 0.75) indicating a small but non-significant 271 

systematic difference between the two methods (t = 1.80, p = 0.08). The LoA ranged from -1.59 272 
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 13 

(95% CI: -2.29, -0.90) to 2.30 (95% CI: 1.60, 2.99), representing that 95% of the differences 273 

between measurements fell within this range.  274 

Good agreement was observed in the clinically relevant post-ACLR cohort (ICC2,k = 0.88, p < 275 

0.001, Table 1). Box-whisker plots are presented in Figure 5B to display the range of values from 276 

both LESS scoring methods (Expert and OpenLESS). In the Bland-Altman analysis (Figure 5D), 277 

a significant (t = 4.06, p < 0.001), directionally similar systematic bias was observed in the post-278 

ACLR cohort, where OpenLESS consistently scored lower than the expert rater with a mean bias 279 

of 1.51 errors (95% CI: 0.74, 2.27). The LoA ranged from -2.28 (95% CI: -3.60, -0.96) to 5.30 280 

(95% CI: 3.97, 6.62). 281 

The automated OpenLESS pipeline completed grading for all 353 validation trials (242 healthy, 282 

119 post-ACLR) in under 25 minutes. This included batch downloading motion data from 283 

OpenCap’s web platform, organizing files, processing them through the automated pipeline, and 284 

performing a manual quality check of event time plots before finalizing LESS scores. In contrast, 285 

expert rater grading required 5 to 7 minutes per trial, totaling over 35 hours to complete all 353 286 

validation trials. 287 

Intersession Reliability 288 

A repeated measures assessment of the OpenLESS score was conducted across four visits, with 289 

17 participants attending all four visits, 19 attending three, and 3 attending two visits. Mean 290 

OpenLESS scores demonstrated minimal variation, ranging from 5.35 errors at visit one, 5.12 at 291 

visit two, 5.87 at visit three, and 5.00 at visit four (Figure 6). OpenLESS demonstrated good to 292 

excellent intersession reliability (ICC2,k = 0.89, p < 0.001, Table 2). Measurement error metrics 293 

indicated an SEM of 0.98 and an MDC of 2.72 OpenLESS errors. 294 

DISCUSSION  295 
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This study developed and validated OpenLESS (Supplemental File 1), an automated scoring 296 

system for the LESS that leverages markerless motion capture technology to enhance the 297 

efficiency and scalability of movement quality assessment. OpenLESS demonstrated good 298 

agreement with expert raters across healthy and post-ACLR cohorts while showing excellent 299 

intersession reliability in a field-based athletic cohort. The kinematic-based event detection 300 

algorithm for identifying the landing phase also showed excellent validity against gold-standard 301 

force plate measurements. Across all cohorts, participant heights ranged from 153 to 192 cm and 302 

weights from 52 to 99 kg, offering insight into OpenLESS’s applicability across diverse body 303 

sizes. Building upon previous efforts to automate movement quality assessments,
2,3

 OpenLESS 304 

provides clinicians and researchers with an efficient, accessible tool for capturing and grading 305 

jump-landing mechanics. 306 

A fundamental validation step for the OpenLESS pipeline was establishing the accuracy of its 307 

event detection algorithm, which processes markerless motion data from OpenCap to identify 308 

key jump-landing events (initial contact and toe-off). We compared OpenLESS's automated 309 

event detection against gold-standard force plate measurements in 98 trials from 12 post-ACLR 310 

participants. The analysis revealed near-perfect agreement (ICC2,1 > 0.99) between OpenLESS 311 

and force plate event timing, validating our approach to automated event detection using 312 

markerless motion capture data. This high level of agreement demonstrates that OpenLESS can 313 

reliably identify key biomechanical events without requiring specialized laboratory equipment. 314 

OpenLESS demonstrated good agreement with expert raters in both healthy and post-ACLR 315 

cohorts, though with a consistent, systematic bias toward slightly lower scores, particularly in the 316 

post-ACLR group. Our observed healthy cohort bias (-0.3 errors) contrasts with earlier 317 

automated systems, such as Mauntel et al.'s depth camera approach, which demonstrated higher 318 
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 15 

scores (+1.2 errors) compared to expert raters.
13

 These differences likely reflect technological 319 

advances, as OpenLESS utilizes dual high-speed smartphone cameras rather than single-320 

perspective depth sensing.
14

 The presence of bias likely reflects differences between algorithmic 321 

and human movement quality assessment thresholds, a pattern commonly observed in automated 322 

kinematic analysis systems.
33

 Notably, the agreement between OpenLESS and expert raters 323 

(ICC2,k = 0.79-0.88) closely parallels the documented interrater reliability among expert raters 324 

themselves (ICC = 0.81-0.93), suggesting that OpenLESS's scoring variability falls within 325 

acceptable clinical limits.
8,10,34

 This reliability is particularly significant given that small sample 326 

sizes often constrain biomechanical studies investigating injury risk and surgical outcomes due to 327 

resource limitations.
35

 The automated nature of OpenLESS could help address these constraints 328 

by enabling larger-scale assessments while maintaining measurement consistency. 329 

OpenLESS demonstrated robust scoring consistency across multiple testing environments, 330 

including an outdoor soccer pitch (grass), athletic field (turf), and indoor recreation center, 331 

validating its utility for movement quality assessment beyond traditional laboratory settings. 332 

Score stability was evident across visits with acceptable measurement error.
10,31

 This temporal 333 

stability is essential for monitoring interventions and rehabilitation progress, where reliable 334 

baseline measurements enable detection of meaningful change.
36

 While traditional LESS scoring 335 

can be subject to rater variability,
10

 OpenLESS achieves high intersession reliability (ICC2,k = 336 

0.89), enhancing precision for longitudinal and post-intervention assessments. This precision 337 

aligns with the growing emphasis on evidence-based injury prevention protocols.
1–4

 The minimal 338 

measurement error further establishes OpenLESS for use in clinical trials and rehabilitation, 339 

where repeated assessments are essential for evaluating improvements and the effectiveness of 340 

intervention programs. 341 
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The assessment of OpenLESS’s measurement properties across three distinct participant 342 

populations demonstrates its robust clinical utility and versatility in real-world settings, directly 343 

addressing critical needs in lower extremity injury risk prevention and intervention.
1–4

 Unlike 344 

traditional research that prioritizes internal validity through strict inclusion/exclusion criteria,
36

 345 

our approach deliberately embraced ecological validity by testing diverse populations and 346 

environments. We validated OpenLESS not only in healthy individuals but also in people post-347 

ACLR, providing evidence of its effectiveness in clinically relevant populations. Our reliability 348 

testing further emphasized real-world applicability by conducting assessments outside laboratory 349 

environments and allowing participants to wear their typical exercise footwear and clothing—350 

conditions known to challenge markerless motion capture systems but essential for clinical 351 

implementation.
5,37

 352 

OpenCap, the foundation of our system, has proven its versatility across multiple applications, 353 

from analyzing gait in neurological disorders
38

 to assessing lower extremity kinematics during 354 

cycling
39

  and evaluating whole-body movement during dynamic balance tasks.
40

 By building 355 

OpenLESS as an open-source tool on this established platform, we provide researchers and 356 

clinicians with an adaptable framework that can be customized for various dynamic activities 357 

and populations, while maintaining measurement precision in real-world conditions. This 358 

accessibility directly responds to the documented need for reliable movement assessment tools 359 

that can be deployed beyond laboratory settings.
13,37

 The combination of OpenCap and 360 

OpenLESS creates new opportunities for larger-scale studies and widespread clinical 361 

implementation of sophisticated biomechanical analysis,
6,37,41

 potentially transforming how we 362 

approach movement screening and injury prevention across diverse populations. 363 
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While previous approaches have employed machine learning to predict LESS total scores based 364 

on expert grader patterns,
15

 OpenLESS takes a fundamentally different approach. Rather than 365 

replicating human scoring patterns, OpenLESS directly processes motion capture data to 366 

evaluate LESS items using categorical criteria, aligning with the original LESS development 367 

methodology.
8,9

 This transparent approach, combined with accessible source code, addresses the 368 

implementation limitations often encountered with proprietary assessment tools. 369 

Biomechanical injury risk assessments have faced criticism for their narrow focus.
42

 Injury risk, 370 

both primary and secondary, involves multiple factors beyond physical function and performance 371 

metrics.
43,44

 Therefore, OpenLESS should be integrated within comprehensive biopsychosocial 372 

assessments for complete performance characterization.
45

 While OpenLESS effectively identifies 373 

aberrant movement patterns consistent with the original LESS,
8,9

 such as less hip and knee 374 

flexion during landing, several limitations warrant consideration.  375 

OpenLESS demonstrated a small systematic bias toward lower scores than expert raters, with a 376 

greater bias observed in the post-ACLR cohort. A post-hoc analysis of item-level errors in this 377 

cohort revealed high agreement for sagittal plane movements but moderate agreement for medial 378 

knee (valgus) errors, with OpenLESS detecting fewer errors than the expert rater at initial 379 

contact (23 vs. 10 errors, Cohen’s κ = 0.41) and lowest center of mass (43 vs. 27 errors, Cohen’s 380 

κ = 0.42). These discrepancies may stem from differences in scoring criteria, markerless motion 381 

capture limitations in frontal and transverse plane estimations, or potential rater bias due to lack 382 

of blinding. Additionally, the MDC across sessions was slightly larger for OpenLESS (2.72 383 

errors) compared to the intersession MDC reported by Hanzliková and Hébert-Losier's 384 

systematic review of expert rater LESS grading (2.25 errors),
10

 though this comparison should be 385 
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interpreted cautiously due to the difference in sample sizes between our study (n = 39) and the 386 

prior reliability study (n = 13). 387 

Beyond measurement considerations, several methodological limitations should be noted. The 388 

use of different sampling frequencies across cohorts (240 Hz for laboratory-based and 60 Hz for 389 

field-based testing) due to varying internet connectivity conditions may have influenced motion 390 

capture quality, though this impact was not directly assessed. While our validity cohorts included 391 

both male and female participants, the reliability analyses were conducted exclusively in female 392 

athletes, limiting the generalizability of the reliability findings across the sexes. Additionally, we 393 

were unable to assess OpenLESS validity in the field-based cohort due to the absence of standard 394 

LESS camera views required for expert rating. Although we anticipate similar agreement given 395 

that only background conditions and sampling frequency differed from laboratory testing, this 396 

assumption requires verification. Nevertheless, the field-based cohort's data remains valuable, 397 

demonstrating OpenLESS's capacity for longitudinal monitoring in real-world settings. These 398 

findings lay the groundwork for expanded validation studies examining OpenLESS performance 399 

across diverse clinical and athletic populations in field-based settings. 400 

Future development should continue leveraging open-source tools like OpenCap to enhance 401 

accessibility and automate additional clinical and return-to-activity assessments, including 402 

cutting movement assessment scores and single-leg LESS variations. Priority areas for future 403 

research include validating OpenLESS in other clinically relevant populations and expanding 404 

validation studies to larger healthy cohorts, with a particular focus on intervention 405 

responsiveness. Encouraging open-source tools not only increases accessibility but also 406 

empowers clinicians and researchers of all experience levels to utilize and adapt these methods 407 

for diverse clinical and research applications. 408 
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CONCLUSION 409 

OpenLESS provides a comprehensive, automated pipeline for jump-landing assessment, 410 

encompassing data processing, event detection, and standardized LESS scoring based on 411 

established operational definitions. The system demonstrates robust reliability and clinical utility 412 

across diverse settings, offering time-efficient movement quality assessment without specialized 413 

laboratory equipment. Initial validation in healthy college-aged and post-ACLR populations 414 

supports OpenLESS as a promising tool for democratizing evidence-based injury risk screening. 415 

By reducing barriers to implementation while maintaining measurement precision, OpenLESS 416 

advances the field toward more accessible, standardized biomechanical assessment.  417 
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FIGURE LEGENDS 549 

 550 

Figure 1. STROBE Flow Diagram 551 

 552 

Figure 2. LESS Jump-Landing Task. The figure was adapted from Turner et al.
30

 with 553 

permission. 554 

 555 

Figure 3. OpenCap Markerless Motion Capture and Force Plate Setup 556 

 557 

Figure 4. OpenLESS Automated Landing Error Scoring System Pipeline 558 

 559 

Figure 5. (A) Healthy cohort box and whisker plot of LESS scores by both methods. (B) Post-560 

ACLR cohort box and whisker plot of LESS scores by both methods. (C) Healthy cohort Bland-561 

Altman plot of OpenLESS compared to expert rater. (D) Post-ACLR cohort Bland-Altman plot 562 

of OpenLESS compared to expert rater. The x-axis “Means” refers to the mean score from the 563 

two rating systems (OpenLESS and expert). The y-axis “Differences” refers to the difference in 564 

score between the two rating systems, i.e., expert rater minus OpenLESS. Mean bias is 565 

represented by the central dashed line, whereas the upper and lower dashed lines represent the 566 

upper and lower limits of agreement. 95% confidence intervals are indicated by the shaded 567 

regions surrounding mean bias and the limits of agreement. 568 

 569 

Figure 6. Field-Based Athlete Cohort LESS scores graded by OpenLESS. Box and whisker plots 570 

with jittered athlete LESS scores across the four repeated visits. 571 
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Table 1. Criterion Validity of OpenLESS in Healthy and Post-ACLR Cohorts 

  
 

 ICC2,k  

Cohort Rater Participants Mean (SD) Value (95% CI) R 

Healthy  

Validation 

Cohort 

OpenLESS 
26  

2.78 (1.38) 
0.79

†
  

(0.55, 0.91) 
0.70

†
 

Expert 3.13 (1.09) 

Post-ACLR 

Validation 

Cohort 

OpenLESS 
27 

5.50 (3.47) 
0.88

†
  

(0.55, 0.96) 
0.86

†
 

Expert 7.01 (3.71) 

Notes: Averaged composite LESS scores computed from automated OpenLESS compared against an 

expert rater in a healthy (12 males and 14 females) and post-ACLR (8 males and 19 females) sample. 

Criterion validity was calculated using a linear mixed-effects model with the ICC function in the psych 

package (v2.6.4.26).  

Confidence interval, CI; intraclass correlation coefficient, ICC; Landing Error Scoring System, LESS. 

Pearson’s correlation coefficient, R. 
† Statistically significant p-value <.05. 
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Table 2. Intersession Reliability of OpenLESS in Field-Based Athlete Cohort 

  
 

 ICC2,k 

Cohort Session Participants Mean (SD) Value (95% CI) SEM MDC 

Athlete 

Reliability 

Cohort 

Visit 1 39 5.35 (2.84) 

0.89
†
  

(0.81, 0.93) 
0.98 2.72 

Visit 2 35 5.12 (3.20) 

Visit 3 34 5.87 (2.44) 

Visit 4 23 5.00 (2.65) 

Notes: Averaged composite LESS scores computed from automated OpenLESS from up to 4 visits 

(each 7 days apart) in 39 female athletes, all athletes contributed at least two visits. Intersession 

reliability was calculated using a linear mixed-effects model with the ICC function in the psych 

package (v2.6.4.26).  

Confidence interval, CI; intraclass correlation coefficient, ICC; Landing Error Scoring System, LESS; 

minimal detectable change, MDC; standard error of measurement, SEM. 
† Statistically significant p-value <.05. 
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Angle    Distal Segment Proximal Segment Plane 

Trunk Flexion   Pelvis   Thigh   Sagittal 

Hip Flexion   Thigh   Pelvis   Sagittal 

Knee Flexion   Lower leg  Thigh   Sagittal 

Ankle Flexion   Foot   Lower Leg  Sagittal 

Lateral Trunk Flexion  Trunk   World   Frontal 

Hip Adduction   Thigh   Pelvis   Frontal 

Knee Valgus   Lower Leg  Thigh   Frontal 

Trunk Rotation  Trunk   World   Transverse 

Foot Rotation   Foot   World   Transverse 

 
 OPENCAP INPUTS DEFINITIONS 

INITIAL CONTACT 

Knee Flexion Knee angle Less than 30˚ of knee flexion at initial contact 

Hip Flexion Hip flexion Less than 30˚ of hip flexion at initial contact 

Trunk Flexion Lumbar extension1 Less than 10˚ of trunk flexion at initial contact (> -10˚) 1 

Ankle PF Toe Coordinates 

Heel Coordinates 

Heel contact at initial contact  

Heel lands at same time or prior to toes 

Asymmetrical Timing Time One foot lands at least ≥ 34 ms before the other initial contact 

Asymmetrical  

Heel-Toe 

Ankle PF results One foot lands heel-to-toe and the other lands toe-to-heel at initial 

contact 

Ankle PF right ≠ left 

Lateral Trunk Flexion Lumbar bending Greater than 5˚ lateral bending to either side 

Knee Valgus Hip rotation 

Hip adduction1
 

If any of the following conditions occur at initial contact: 

- Hip rotation > 8˚ and hip adduction > -1˚ 

- OR 

- Hip adduction >1˚ 

Wide Stance Width Hip adduction1 Greater than 12˚ of hip abduction at initial contact (< -12˚) 1 

Narrow Stance Width Hip adduction
1
 Greater than 0˚ of hip adduction at initial contact (> 0˚)

1
 

Foot Inward Rotation Subtalar angle Greater than 10˚ of foot rotation inward (> 10˚) 

 

Foot Outward Rotation Subtalar angle Greater than 15 degrees of foot rotation outward (< -15˚) 

 

   

MAXIMUM POSITION 

Knee Flexion Knee angle Less than 65˚ of maximum knee flexion 

Hip Flexion Hip flexion Less than 45˚ degrees of maximum hip flexion 

Trunk Flexion Lumbar extension Less than 10˚ degrees of difference between initial contact and 

maximum position trunk flexion (< 10˚) 1 

Knee Valgus Hip rotation 

Hip adduction1 

If any of the following conditions occur at max position: 

- Hip rotation > 8˚ and hip adduction > -1˚ 

- OR 

- Hip adduction >1˚ 

Asymmetrical Loading Hip adduction1 Greater than 5.1 degree2 difference in maximum hip adduction 

between right and left legs 

Sagittal Plane Joint 

Displacement 

Max position knee, hip, 

and trunk results 

Soft (0) = No errors for knee, hip, and trunk flexion max position  

 

Average (1) = < 55˚ max knee flexion OR < 73˚ max hip flexion  

 

Stiff (2) = Error present for knee, hip, or trunk flexion max position 

 

Overall Impression 

 

Max position knee, hip, 

trunk, valgus, and initial 

contact valgus results. 

Excellent (0) = No errors for knee, hip, and trunk flexion max 

position AND no error for knee valgus max position  
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Average (1) = All others that do not class as Excellent or Poor 

 

Poor (2) = Errors for knee flexion OR hip flexion OR trunk flexion 

max position AND error for either knee valgus at initial contact OR 

knee valgus max position 

 

 

TOTAL SCORE
3 

 

  

Summation of all errors 

 
1 These values are inverted in OpenCap. The pipeline handles the OpenCap values in their original directionality. 
2 Mean absolute error for drop jump kinematics was 5.1˚ (2.3˚, 8.6˚). Ulrich et al. 2022. 
3 For averaging across repeated trials we recommend two approaches 1) simple approach would be to average the errors for each 

item across a minimum of 3 trials, or 2) an error within an item occurs if most trials for an individual input was an error (e.g., ≥2 had 

errors out of 3 trials with knee flexion initial contact would have a final score of 1 error). Both approaches appear to represent the 

construct of movement errors similarly according to Hanzlikova et al. 2020. 
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Supplemental File 3. Jump Landing Key Event Detection with OpenCap Markerless Motion Capture  

   ICC (2,1) 

Jump Landing 

Event Time 
Method Mean (SD) Value P value 

Initial Ground 

Contact (seconds) 

Force Plate 6.745 (4.475) 

0.999 <.001 

OpenCap 6.775 (4.511) 

Toe-Off (seconds) 

Force Plate 7.365 (4.524) 

0.999 <.001 

OpenCap 7.277 (4.552) 

Notes: 12 post-ACLR subjects (6 males and 6 females), 98 trials comparing force plate and OpenCap 

derived key event times. Anterior Cruciate Ligament Reconstruction, ACLR; Intraclass Correlation 

Coefficient, ICC; Standard Deviation, SD. 
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