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“The pessimist complains about the wind; the optimist 
expects it to change; the realist adjusts the sails.” 

 -William Arthur Ward 
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Evidence-Based Practice 

• Proponents of evidence-based practice (EBP) argue that 
research evidence is one of three components that should 
inform practice 

• “Evidence-based medicine is the integration of the best 
research evidence with clinical expertise and patient values.“  

 

 

 

 

 
Sackett D et al. Evidence-Based Medicine: How to Practice and Teach EBM, 2nd edition. Churchill Livingstone, Edinburgh, 2000 
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What Is the Best Evidence? 

• Clinical questions concerning effectiveness are most 
reliably addressed using randomized controlled trials 

• Questions about causation and harm are best answered 
by evidence from cohort or case-control studies 

• Feelings and perceptions are commonly addressed using 
qualitative techniques 

 

• Larger studies are typically more powerful and important 
than smaller ones  

• Large effect sizes that support hypothesis are better than 
small effect sizes 
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Evidence for Guidance 

• The evidence that we gather and read about shapes clinical 
practice by providing guidance and reducing uncertainty 

• The role of evidence becomes particularly salient when 
patient encounters generate questions about: 

– Accuracy of diagnostic tests 

– Costs and benefits of therapy 

– Prognosis of diseases 

– Etiology of disorders 
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Evidence: Mathematical Models 

• We quantify evidence using mathematical models 

• But, the investigation of physical systems includes a stochastic 
element: We are not certain about the values of parameters, 
measurements, expected inputs or disturbances 

• So, the effect and sequelae of a clinical decision are estimated 
probabilistically using mathematical models that approximate 
reality  
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Evidence: Probabilistic 

• So, evidence is presented probabilistically: 

– 92% sensitivity, 87% specificity 

– 57% probability of full recovery with this therapy 

– 25% relative decrease in acute ankle injury among those in 
the prevention group 

– 28% probability the condition will recur in this population 
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How Is Evidence Used? 

• How does new research evidence alter the way you approach 
a clinical question? 

 

• Example: Epidemiology of ankle sprains for:  

– Diagnostic purposes (sex, sport, age) 

– Risk analysis 

– Cost/benefit analysis of prevention program 

• Metric: Incidence rate of ankle injuries per 1000 exposures 
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Simple Probability 
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Novice AT 
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Experienced AT 
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Conditional Probability 

• We might want to “condition” our estimate to match the 
profile of the population of interest  

• Conditional probability: You make an estimate 
“conditioned on” the fact that  . . . 

• A change in context alters our expectation 
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Sex 

Male Female 
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Court Sports Ice/Water Sports Field Sports 
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Sport 



Recurrent Initial 
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Initial vs Recurrent Injury 



Prior Probability 

• Based on your clinical experience and familiarity with the 
evidence, you enter the patient encounter with 
hypotheses about what is wrong, what will improve the 
condition, and how things will go in the long term 

• These hypotheses are educated guesses, or “prior 
probabilities” 
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Posterior Probability 

• Evidence obtained subsequently from the history and 
physical, diagnostic tests, and consulting the literature is 
used to update prior probabilities  to arrive at a final 
probability estimate (posterior probability) 

• How do we get from prior to posterior probability? 

• We use conditional logic: If this, then that 
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Bayes Theorem 

• Thomas Bayes (1701 - 1761), a British mathematician and 
minister, is credited for describing a process for adjusting 
and updating the likelihood of an event based on data -- 
as the data are generated  

• Bayes' theorem describes the relationships that exist 
within an array of simple and conditional probabilities 
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Conditional Probability 

• Bayes’ Theorem: 

 

 

 

where Pr(A) is the probability of event A (ankle sprain) 
happening and Pr(A|B) is the probability of event A happening 
given that event B (prior ankle injury) has happened 

• Bayes’ Theorem provides a formal mathematical approach to 
combine our hypotheses with new evidence 

Pr 𝐴  𝐵) =
Pr 𝐵  𝐴 Pr (𝐴)

Pr (𝐵)
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Evaluating Potential Ankle Sprains: 
No Prior Injury 

MRI (Gold Standard) 

D+ D- Total 

 

Manual 
palpation 

T+ 9 8 17 

T- 3 80 83 

12 88 100 

100 patients with ankle pain 
manual palpation, then MRI 
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P(D+) = (12/100)=.12  
The probability that the condition will be 
present in any particular person  

Incidence 

P(D-) = 1 - .12 = .88  
The probability that the condition will 
not be present in any particular person  

Complement 

Incidence 
MRI 

D+ D- Total 

 

Manual 
palpation 

T+ 9 8 17 

T- 3 80 83 

12 88 100 
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P(T+|D+) = (9/12)=.75 
The probability that the test will yield a 
positive result [T+] if the condition is 
present [D+]  

Sensitivity 

P(T-|D+) = 1—.75 = .25  
The probability that the test will yield a 
negative result [T-] if the condition is 
present [D+]  

Complement 

Sensitivity 
MRI 

D+ D- Total 

 

Manual 
palpation 

T+ 9 8 17 

T- 3 80 83 

12 88 100 
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P(T-|D-) = (80/88)=.91 
The probability that the test will yield a 
negative result [T-] if the condition is 
not present [D-]  

Specificity 

P(T+|D-) = 1-.91 = .09  
The probability that the test will yield a 
positive result [T+] if the condition is 
not present [D-]  

Complement 

Specificity 
MRI 

D+ D- Total 

 

Manual 
palpation 

T+ 9 8 17 

T- 3 80 83 

12 88 100 

24 



A Practical Example of Conditional 
Probability 

• Sensitivity and specificity describe a medical test’s accuracy if 
we know whether or not the patient has the condition: 

• Sensitivity: The probability that the test is positive if the 
condition is present   

– Pr(T+|D+) 

• Specificity: The probability that the test is negative if the 
condition is absent   

– Pr(T-|D-) 

• Is this helpful? 
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A Practical Example of Conditional 
Probability 

• We need to know the inverse to assess diagnosis: 

– If the test is positive, what is the probability the patient 
has the condition, Pr(D+|T+):  

• Positive Predictive Value  

– If the test is negative, what is the probability the patient 
does not have the condition, Pr(D-|T-):  

• Negative Predictive Value 
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A Practical Example of Conditional 
Probability 

• We use Bayes’ to convert sensitivity/specificity to 
what we really want to know: How strongly we 
should believe in the test results, given the new data, 
i.e., positive and negative predictive values 

 

27 

𝑃𝑃𝑉 =
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑥 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡
 𝑁𝑃𝑉 =

(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑥 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡
 

 

            = [.75 x .12] / .17 
            = .53  
 

 

          = [.91 x .88] / .83 
          = .96  
 



Evaluating Potential Ankle Sprains: 
Prior Injury 

MRI 

D+ D- Total 

 

Manual 
palpation 

T+ 21 6 27 

T- 7 66 73 

28 72 100 

100 patients with ankle pain 
manual palpation, then MRI 

Sensitivity = .75; Specificity = .91 
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Same SnS/SpC, Different Incidences 

Incidence PPV NPV 

 

.12 
 

            = [.75 x .12] / .17 
            = .53  
 

 

          = [.91 x .88] / .83 
          = .96  
 

 
.28 

 

            = [.75 x .28] / .27 
            = .77  
 

 

          = [.91 x .72] / .73 
          = .90  
 

Assuming the properties of the test remain constant, the PPV 
will increase with increasing incidence; and NPV decreases with 
an increase in incidence 
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𝑃𝑃𝑉 =
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑥 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡
 𝑁𝑃𝑉 =

(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑥 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡
 



Bayes' Theorem 

• A high prior probability makes it easier to confirm 
the hypothesis of the presence of the target 
condition 

• A low prior probability will make it easier to accept 
the hypothesis of absence of the condition 

• If the probability of a new ankle sprain is 
(conditionally) related to a previous ankle sprain, 
Bayes' theorem can be used to more accurately 
assess the probability of a new ankle sprain 
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Beyond the Diagnostic Test 

• Each piece of evidence that a clinician discovers (e.g., 
aspects of the history and physical examination) may be 
viewed as a separate test, each with its own test 
characteristics and associated probabilities 

• So, the results of each test may be used to form a 
conditional statement 

• Bayes’ theorem allows clinicians to explicitly apply 
published test characteristics to their probability 
assessment  
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Naïve Bayes Classifiers 

• This diagnostic test example illustrates the use of a single 
“naïve” Bayes classifier: The predictor (initial vs 
recurrent) ankle injury is assumed to operate 
independently of information gleaned from other tests 

• Obviously, the results of multiple tests on a patient are 
inter-connected and dependent 

• Complex Bayesian models incorporating many inter-
related predictors are possible and feasible 
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Continuous Predictors 

• Bayes' theorem also applies to continuous variables, e.g. 
heart rate, systolic and diastolic blood pressure 

• The Bayesian theorem for conditional densities are 
related this way: 

 

 

• Like probabilities, densities are ≥ 0, and sum to 1 
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